Do you want to publish a course? Click here

Stability, Gain, and Robustness in Quantum Feedback Networks

53   0   0.0 ( 0 )
 Added by Matthew R. James
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper concerns the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one-this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization.



rate research

Read More

Quantum networks are a new paradigm of complex networks, allowing us to harness networked quantum technologies and to develop a quantum internet. But how robust is a quantum network when its links and nodes start failing? We show that quantum networks based on typical noisy quantum-repeater nodes are prone to discontinuous phase transitions with respect to the random loss of operating links and nodes, abruptly compromising the connectivity of the network, and thus significantly limiting the reach of its operation. Furthermore, we determine the critical quantum-repeater efficiency necessary to avoid this catastrophic loss of connectivity as a function of the network topology, the network size, and the distribution of entanglement in the network. In particular, our results indicate that a scale-free topology is a crucial design principle to establish a robust large-scale quantum internet.
134 - J. Gough , R. Gohm , M. Yanagisawa 2008
The mathematical theory of quantum feedback networks has recently been developed for general open quantum dynamical systems interacting with bosonic input fields. In this article we show, for the special case of linear dynamical systems Markovian systems with instantaneous feedback connections, that the transfer functions can be deduced and agree with the algebraic rules obtained in the nonlinear case. Using these rules, we derive the the transfer functions for linear quantum systems in series, in cascade, and in feedback arrangements mediated by beam splitter devices.
585 - J. Gough , M.R. James 2008
A quantum network is an open system consisting of several component Markovian input-output subsystems interconnected by boson field channels carrying quantum stochastic signals. Generalizing the work of Chebotarev and Gregoratti, we formulate the model description by prescribing a candidate Hamiltonian for the network including details the component systems, the field channels, their interconnections, interactions and any time delays arising from the geometry of the network. (We show that the candidate is a symmetric operator and proceed modulo the proof of self-adjointness.) The model is non-Markovian for finite time delays, but in the limit where these delays vanish we recover a Markov model and thereby deduce the rules for introducing feedback into arbitrary quantum networks. The type of feedback considered includes that mediated by the use of beam splitters. We are therefore able to give a system-theoretic approach to introducing connections between quantum mechanical state-based input-output systems, and give a unifying treatment using non-commutative fractional linear, or Mobius, transformations.
We investigate continuous variable quantum teleportation. We discuss the methods presently used to characterize teleportation in this regime, and propose an extension of the measures proposed by Grangier and Grosshans cite{Grangier00}, and Ralph and Lam cite{Ralph98}. This new measure, the gain normalized conditional variance product $mathcal{M}$, turns out to be highly significant for continuous variable entanglement swapping procedures, which we examine using a necessary and sufficient criterion for entanglement. We elaborate on our recent experimental continuous variable quantum teleportation results cite{Bowen03}, demonstrating success over a wide range of teleportation gains. We analyze our results using fidelity; signal transfer, and the conditional variance product; and a measure derived in this paper, the gain normalized conditional variance product.
Enabled by rapidly developing quantum technologies, it is possible to network quantum systems at a much larger scale in the near future. To deal with non-Markovian dynamics that is prevalent in solid-state devices, we propose a general transfer function based framework for modeling linear quantum networks, in which signal flow graphs are applied to characterize the network topology by flow of quantum signals. We define a noncommutative ring $mathbb{D}$ and use its elements to construct Hamiltonians, transformations and transfer functions for both active and passive systems. The signal flow graph obtained for direct and indirect coherent quantum feedback systems clearly show the feedback loop via bidirectional signal flows. Importantly, the transfer function from input to output field is derived for non-Markovian quantum systems with colored inputs, from which the Markovian input-output relation can be easily obtained as a limiting case. Moreover, the transfer function possesses a symmetry structure that is analogous to the well-know scattering transformation in sd picture. Finally, we show that these transfer functions can be integrated to build complex feedback networks via interconnections, serial products and feedback, which may include either direct or indirect coherent feedback loops, and transfer functions between quantum signal nodes can be calculated by the Riegles matrix gain rule. The theory paves the way for modeling, analyzing and synthesizing non-Markovian linear quantum feedback networks in the frequency-domain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا