Do you want to publish a course? Click here

WMAP 5-year constraints on lepton asymmetry and radiation energy density: Implications for Planck

208   0   0.0 ( 0 )
 Added by Lucia Popa
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we set bounds on the radiation content of the Universe and neutrino properties by using the WMAP-5 year CMB measurements complemented with most of the existing CMB and LSS data (WMAP5+All),imposing also self-consistent BBN constraints on the primordial helium abundance. We consider lepton asymmetric cosmological models parametrized by the neutrino degeneracy parameter and the variation of the relativistic degrees of freedom, due to possible other physical processes occurred between BBN and structure formation epochs. We find that WMAP5+All data provides strong bounds on helium mass fraction and neutrino degeneracy parameter that rivals the similar bounds obtained from the conservative analysis of the present data on helium abundance. We also find a strong correlation between the matter energy density and the redshift of matter-radiation equality, z_re, showing that we observe non-zero equivalent number of relativistic neutrinos mainly via the change of the of z_re, rather than via neutrino anisotropic stress claimed by the WMAP team. We forecast that the CMB temperature and polarization measurements observed with high angular resolutions and sensitivities by the future Planck satellite will reduce the errors on these parameters down to values fully consistent with the BBN bounds.



rate research

Read More

We present a Gaussianity analysis of the WMAP 5-year Cosmic Microwave Background (CMB) temperature anisotropy data maps. We use several third order estimators based on the spherical Mexican hat wavelet. We impose constraints on the local non-linear coupling parameter fnl using well motivated non-Gaussian simulations. We analyse the WMAP maps at resolution of 6.9 arcmin for the Q, V, and W frequency bands. We use the KQ75 mask recommended by the WMAP team which masks out 28% of the sky. The wavelet coefficients are evaluated at 10 different scales from 6.9 to 150 arcmin. With these coefficients we compute the third order estimators which are used to perform a chi-squared analysis. The chi-squared statistic is used to test the Gaussianity of the WMAP data as well as to constrain the fnl parameter. Our results indicate that the WMAP data are compatible with the Gaussian simulations, and the fnl parameter is constrained to -8 < fnl < +111 at 95% CL for the combined V+W map. This value has been corrected for the presence of undetected point sources, which add a positive contribution of Delta_fnl = 3+-5 in the V+W map. Our results are very similar to those obtained by Komatsu et al (2008) using the bispectrum.
We use the Hamilton--Jacobi formalism to constrain the space of possible single field, inflationary Hubble flow trajectories when compared to the WMAP and Planck satellites Cosmic Microwave Background (CMB) results. This method yields posteriors on the space of Hubble Slow Roll (HSR) parameters that uniquely determine the history of the Hubble parameter during the inflating epoch. The trajectories are used to numerically determine the observable primordial power spectrum and bispectra that can then be compared to observations. Our analysis is used to infer the most likely shape of the inflaton potential $V(phi)$ and also yields a prediction for, $f_{rm NL}$, the dimensionless amplitude of the non-Gaussian bispectrum.
195 - L.A.Popa 2006
We show that the delay of structure formation can not fully account for the reduction of electron optical depth from WMAP1 to WMAP3 when the radiative transfer effects and feedback mechanisms are took into account in computing the reionization history of the Universe. We also show that a PopIII stellar cluster with a mass of 80Mo and a heavy Larson initial mass function has an ionizing efficiency high enough to account for WMAP3 results, while in the case of WMAP1, a higher stellar mass of 1000Mo was required.
We investigate the constraints imposed by the first-year WMAP CMB data extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and by the LSS data from the 2dF galaxy redshift survey on the possible amplitude of primordial isocurvature modes. A flat universe with CDM and Lambda is assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity (NIV) isocurvature modes are considered. Constraints on the allowed isocurvature contributions are established from the data for various combinations of the adiabatic mode and one, two, and three isocurvature modes, with intermode cross-correlations allowed. Since baryon and CDM isocurvature are observationally virtually indistinguishable, these modes are not considered separately. We find that when just a single isocurvature mode is added, the present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7 percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two isocurvature modes plus the adiabatic mode and cross-correlations are allowed, these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature modes and cross-correlations are allowed, the admissible isocurvature fraction rises to 57+-9 per cent. The sensitivity of the results to the choice of prior probability distribution is examined.
Gamma rays and microwave observations of the Galactic Center and surrounding areas indicate the presence of anomalous emission, whose origin remains ambiguous. The possibility of dark matter (DM) annihilation explaining both signals through prompt emission at gamma-rays and secondary emission at microwave frequencies from interactions of high-energy electrons produced in annihilation with the Galactic magnetic fields has attracted much interest in recent years. We investigate the DM interpretation of the Galactic Center gamma-ray excess by searching for the associated synchrotron in the WMAP-Planck data. Considering various magnetic field and cosmic-ray propagation models, we predict the synchrotron emission due to DM annihilation in our Galaxy, and compare it with the WMAP-Planck data at 23-70GHz. In addition to standard microwave foregrounds, we separately model the microwave counterpart to the Fermi Bubbles and the signal due to DM, and use component separation techniques to extract the signal associated with each template from the total emission. We confirm the presence of the Haze at the level of 7% of the total sky intensity at 23GHz in our chosen region of interest, with a harder spectrum $I sim u^{-0.8}$ than the synchrotron from regular cosmic-ray electrons. The data do not show a strong preference towards fitting the Haze by either the Bubbles or DM emission only. Inclusion of both components provides a better fit with a DM contribution to the Haze emission of 20% at 23GHz, however, due to significant uncertainties in foreground modeling, we do not consider this a clear detection of a DM signal. We set robust upper limits on the annihilation cross section by ignoring foregrounds, and also report best-fit DM annihilation parameters obtained from a complete template analysis. We conclude that the WMAP-Planck data are consistent with a DM interpretation of the gamma-ray excess.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا