Do you want to publish a course? Click here

Planck and WMAP constraints on generalised Hubble flow inflationary trajectories

219   0   0.0 ( 0 )
 Added by Carlo R. Contaldi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Hamilton--Jacobi formalism to constrain the space of possible single field, inflationary Hubble flow trajectories when compared to the WMAP and Planck satellites Cosmic Microwave Background (CMB) results. This method yields posteriors on the space of Hubble Slow Roll (HSR) parameters that uniquely determine the history of the Hubble parameter during the inflating epoch. The trajectories are used to numerically determine the observable primordial power spectrum and bispectra that can then be compared to observations. Our analysis is used to infer the most likely shape of the inflaton potential $V(phi)$ and also yields a prediction for, $f_{rm NL}$, the dimensionless amplitude of the non-Gaussian bispectrum.



rate research

Read More

124 - Joseph Elliston 2013
Inflation is an early period of accelerated cosmic expansion, thought to be sourced by high energy physics. A key task today is to use the influx of increasingly precise observational data to constrain the plethora of inflationary models suggested by fundamental theories of interactions. This requires a robust theoretical framework for quantifying the predictions of such models; helping to develop such a framework is the aim of this thesis. We provide the first complete quantization of subhorizon perturbations for the well-motivated class of multi-field inflationary models with a non-trivial field metric, which we show may yield interesting signatures in the bispectrum of the Cosmic Microwave Background (CMB). The subsequent evolution of perturbations in the superhorizon epoch is then considered, via a covariant extension of the transport formalism. To develop intuition about the relationship between inflationary dynamics and the evolution of cosmic observables, we investigate analytic approximations of superhorizon perturbation evolution. The validity of these analytic results is contingent on reaching a state of adiabaticity which we discuss and illustrate in depth. We then apply our analytic methods to elucidate the types of inflationary dynamics that lead to an enhanced CMB non-Gaussianity, both in its bispectrum and trispectrum. In addition to deriving a number of new simple relations between the non-Gaussianity parameters, we explain dynamically how and why different shapes of inflationary potential lead to particular observational signatures. Candidate theories of high energy physics such as low energy effective string theory also motivate single-field modifications to the Einstein-Hilbert action. We show how a range of such corrections allow for consistency of single-field chaotic inflationary models that are otherwise in tension with observational data.
We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single--field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation allows generally shape and scale dependent bispectra, or dimensionless $f_{NL}$, in the out-of-slow-roll regime. The distributions of $f_{NL}$ for various shapes and HSR proposals are shown as an example of how this procedure can be used within the context of Monte Carlo exploration of inflationary trajectories. We also show how allowing out-of-slow-roll behaviour can lead to a bispectrum that is relatively large for equilateral shapes.
Consistency between cosmological data sets is essential for ongoing and future cosmological analyses. We first investigate the questions of stability and applicability of some moment-based inconsistency measures to multiple data sets. We show that the recently introduced index of inconsistency (IOI) is numerically stable while it can be applied to multiple data sets. We use an illustrative construction of constraints as well as an example with real data sets (i.e. WMAP versus Planck) to show some limitations of the application of the Karhunen-Loeve decomposition to discordance measures. Second, we perform various consistency analyzes using IOI between multiple current data sets while textit{working with the entire common parameter spaces}. We find current Large-Scale-Structure (LSS) data sets (Planck CMB lensing, DES lensing-clustering and SDSS RSD) all to be consistent with one another. This is found to be not the case for Planck temperature (TT) versus polarization (TE,EE) data, where moderate inconsistencies are present. Noteworthy, we find a strong inconsistency between joint LSS probes and Planck with IOI=5.27, and a moderate tension between DES and Planck with IOI=3.14. Next, using the IOI metric, we compare the Hubble constant from five independent probes. We confirm previous strong tensions between local measurement (SH0ES) and Planck as well as between H0LiCOW and Planck, but also find new strong tensions between SH0ES measurement and the joint LSS probes with IOI=6.73 (i.e. 3.7-$sigma$ in 1D) as well as between joint LSS and combined probes SH0ES+H0LiCOW with IOI=8.59 (i.e. 4.1-$sigma$ in 1D). Whether due to systematic effects in the data sets or problems with the underlying model, sources of these old and new tensions need to be identified and dealt with.
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Although similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
We use WMAP 9-year and other CMB data to constrain cosmological models where the primordial perturbations have both an adiabatic and a (possibly correlated) neutrino density (NDI), neutrino velocity (NVI), or cold dark matter density (CDI) isocurvature component. For NDI and CDI we use both a phenomenological approach, where primordial perturbations are parametrized in terms of amplitudes at two scales, and a slow-roll two-field inflation approach, where slow-roll parameters are used as primary parameters. For NVI we use only the phenomenological approach, since it is difficult to imagine a connection with inflation. We find that in the NDI and NVI cases larger isocurvature fractions are allowed than in the corresponding models with CDI. For uncorrelated perturbations, the upper limit to the primordial NDI (NVI) fraction is 24% (20%) at k = 0.002 Mpc^{-1} and 28% (16%) at k = 0.01 Mpc^{-1}. For maximally correlated (anticorrelated) perturbations, the upper limit to the NDI fraction is 3.0% (0.9%). The nonadiabatic contribution to the CMB temperature variance can be as large as 10% (-13%) for the NDI (NVI) modes. Bayesian model comparison favors pure adiabatic initial mode over the mixed primordial adiabatic and NDI, NVI, or CDI perturbations. At best, the betting odds for a mixed model (uncorrelated NDI) are 1:3.4 compared to the pure adiabatic model. For the phenomenological generally correlated mixed models the odds are about 1:100, whereas the slow-roll approach leads to 1:13 (NDI) and 1:51 (CDI).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا