Do you want to publish a course? Click here

Constraints on isocurvature models from the WMAP first-year data

400   0   0.0 ( 0 )
 Added by Joanna Dunkley
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the constraints imposed by the first-year WMAP CMB data extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and by the LSS data from the 2dF galaxy redshift survey on the possible amplitude of primordial isocurvature modes. A flat universe with CDM and Lambda is assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity (NIV) isocurvature modes are considered. Constraints on the allowed isocurvature contributions are established from the data for various combinations of the adiabatic mode and one, two, and three isocurvature modes, with intermode cross-correlations allowed. Since baryon and CDM isocurvature are observationally virtually indistinguishable, these modes are not considered separately. We find that when just a single isocurvature mode is added, the present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7 percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two isocurvature modes plus the adiabatic mode and cross-correlations are allowed, these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature modes and cross-correlations are allowed, the admissible isocurvature fraction rises to 57+-9 per cent. The sensitivity of the results to the choice of prior probability distribution is examined.



rate research

Read More

We use WMAP 9-year and other CMB data to constrain cosmological models where the primordial perturbations have both an adiabatic and a (possibly correlated) neutrino density (NDI), neutrino velocity (NVI), or cold dark matter density (CDI) isocurvature component. For NDI and CDI we use both a phenomenological approach, where primordial perturbations are parametrized in terms of amplitudes at two scales, and a slow-roll two-field inflation approach, where slow-roll parameters are used as primary parameters. For NVI we use only the phenomenological approach, since it is difficult to imagine a connection with inflation. We find that in the NDI and NVI cases larger isocurvature fractions are allowed than in the corresponding models with CDI. For uncorrelated perturbations, the upper limit to the primordial NDI (NVI) fraction is 24% (20%) at k = 0.002 Mpc^{-1} and 28% (16%) at k = 0.01 Mpc^{-1}. For maximally correlated (anticorrelated) perturbations, the upper limit to the NDI fraction is 3.0% (0.9%). The nonadiabatic contribution to the CMB temperature variance can be as large as 10% (-13%) for the NDI (NVI) modes. Bayesian model comparison favors pure adiabatic initial mode over the mixed primordial adiabatic and NDI, NVI, or CDI perturbations. At best, the betting odds for a mixed model (uncorrelated NDI) are 1:3.4 compared to the pure adiabatic model. For the phenomenological generally correlated mixed models the odds are about 1:100, whereas the slow-roll approach leads to 1:13 (NDI) and 1:51 (CDI).
67 - Hiranya Peiris 2006
We study the constraints on the inflationary parameter space derived from the 3 year WMAP dataset using ``slow roll reconstruction, using the SDSS galaxy power spectrum to gain further leverage where appropriate. This approach inserts the inflationary slow roll parameters directly into a Monte Carlo Markov chain estimate of the cosmological parameters, and uses the inflationary flow hierarchy to compute the parameters scale-dependence. We work with the first three parameters (epsilon, eta and xi) and pay close attention to the possibility that the 3 year WMAP dataset contains evidence for a ``running spectral index, which is dominated by the xi term. Mirroring the WMAP teams analysis we find that the permitted distribution of xi is broad, and centered away from zero. However, when we require that inflationary parameters yield at least 30 additional e-folds of inflation after the largest observable scales leave the horizon, the bounds on xi tighten dramatically. We make use of the absence of an explicit pivot scale in the slow roll reconstruction formalism to determine the dependence of the computed parameter distributions on the pivot. We show that the choice of pivot has a significant effect on the inferred constraints on the inflationary variables, and the spectral index and running derived from them. Finally, we argue that the next round of cosmological data can be expected to place very stringent constraints on the region of parameter space open to single field models of slow roll inflation.
We perform a wavelet analysis of the temperature and polarization maps of the Cosmic Microwave Background (CMB) delivered by the WMAP experiment in search for a parity violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset the WMAP and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a non zero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle Deltaalpha= -2.5 pm 3.0 (Deltaalpha= -2.5 pm 6.0) at the one (two) sigma level, consistent with a null detection.
We perform a blind multi-component analysis of the WMAP 1 year foreground cleaned maps using SMICA (Spectral Matching Independent Component Analysis). We provide a new estimate of the CMB power spectrum as well as the amplitude of the CMB anisotropies across frequency channels. We show that the CMB anisotropies are compatible with temperature fluctuations as expected from the standard paradigm. The analysis also allows us to identify and separate a weak residual galactic emission present significantly in the Q-band outside of the Kp2 mask limits, and mainly concentrated at low galactic latitudes. We produce a map of this residual component by Wiener filtering using estimated parameters. The level of contamination of CMB data by this component is compatible with the WMAP team estimation of foreground residual contamination. In addition, the multi-component analysis allows us to estimate jointly the power spectrum of unresolved point source emission.
In the curvaton model of inflation, where a second scalar field, the curvaton, is responsible for the observed inhomogeneity, a non-zero neutrino degeneracy may lead to a characteristic pattern of isocurvature perturbations in the neutrino, cold dark matter and baryon components. We find the current data can only place upper limits on the level of isocurvature perturbations. These can be translated into upper limits on the neutrino degeneracy parameter. In the case that lepton number is created before curvaton decay, we find that the limit on the neutrino degeneracy parameter is comparable with that obtained from Big-bang nucleosynthesis. For the case that lepton number is created by curvaton decay we find that the absolute value of the non-Gaussianity parameter, |f_nl|, must be less than 10 (95% confidence interval).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا