During the attempt to park a car in the city the drivers have to share limited resources (the available roadside). We show that this fact leads to a predictable distribution of the distances between the cars that depends on the length of the street segment used for the collective parking. We demonstrate in addition that the individual parking maneuver is guided by generic psychophysical perceptual correlates. Both predictions are compared with the actual parking data collected in the city of Hradec Kralove (Czech Republic).
We show that the spacing distribution between parked cars can be obtained as a solution of certain linear distributional fixed point equation. The results are compared with the data measured on the streets of Hradec Kralove. We also discuss a relation of this results to the random matrix theory.
In an impending urban age where the majority of the worlds population will live in cities, it is critical that we improve our understanding of the strengths and limitations of existing city designs to ensure they are safe, clean, can deliver health co-benefits and importantly, are sustainable into the future. To enable this, a systematic and efficient means of performing inter- and intra-city comparisons based on urban form is required. Until now, methods for comparing cities have been limited by scalability, often reliant upon non-standardised local input data that can be costly and difficult to obtain. To address this, we have developed a unique approach to determine the mix, distribution, and composition of neighbourhood types in cities based on dimensions of block size and regularity, sorted by a self-organising map. We illustrate the utility of the method to provide an understanding of the underlying city morphology by overlaying spatially standardised city metrics such as air pollution and transport activity across a set of 1667 global cities with populations exceeding 300,000. The unique approach reports associations between specific mixes of neighbourhood typologies and quantities of moving vehicles (r=0.97), impervious surfaces (r=0.86), and air pollution levels (aerosol optical depth r=0.58 and NO$_{2}$ r=0.57). What this illustrates, is that this unique approach can identify the characteristics and neighbourhood mixes of well-performing urban areas while also producing unique `city fingerprints that can be used to provide new metrics, insights, and drive improvements in city design for the future.
Using measured data we demonstrate that there is an amazing correspondence among the statistical properties of spacings between parked cars and the distances between birds perching on a power line. We show that this observation is easily explained by the fact that birds and human use the same mechanism of distance estimation. We give a simple mathematical model of this phenomenon and prove its validity using measured data.
This chapter looks at the spatial distribution and mobility patterns of essential and non-essential workers before and during the COVID-19 pandemic in London and compares them to the rest of the UK. In the 3-month lockdown that started on 23 March 2020, 20% of the workforce was deemed to be pursuing essential jobs. The other 80%% were either furloughed, which meant being supported by the government to not work, or working from home. Based on travel journey data between zones (trips were decomposed into essential and non-essential trips. Despite some big regional differences within the UK, we find that essential workers have much the same spatial patterning as non-essential for all occupational groups containing essential and non-essential workers. Also, the amount of travel time saved by working from home during the Pandemic is roughly the same proportion -80%-as the separation between essential and non-essential workers. Further, the loss of travel, reduction in workers, reductions in retail spending as well as increases in use of parks are examined in different London boroughs using Google Mobility Reports which give us a clear picture of what has happened over the last 6 months since the first Lockdown. These reports also now imply that a second wave of infection is beginning.
The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economic activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.