No Arabic abstract
This chapter looks at the spatial distribution and mobility patterns of essential and non-essential workers before and during the COVID-19 pandemic in London and compares them to the rest of the UK. In the 3-month lockdown that started on 23 March 2020, 20% of the workforce was deemed to be pursuing essential jobs. The other 80%% were either furloughed, which meant being supported by the government to not work, or working from home. Based on travel journey data between zones (trips were decomposed into essential and non-essential trips. Despite some big regional differences within the UK, we find that essential workers have much the same spatial patterning as non-essential for all occupational groups containing essential and non-essential workers. Also, the amount of travel time saved by working from home during the Pandemic is roughly the same proportion -80%-as the separation between essential and non-essential workers. Further, the loss of travel, reduction in workers, reductions in retail spending as well as increases in use of parks are examined in different London boroughs using Google Mobility Reports which give us a clear picture of what has happened over the last 6 months since the first Lockdown. These reports also now imply that a second wave of infection is beginning.
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for the New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough moment for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in peoples mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.
In March of this year, COVID-19 was declared a pandemic and it continues to threaten public health. This global health crisis imposes limitations on daily movements, which have deteriorated every sector in our society. Understanding public reactions to the virus and the non-pharmaceutical interventions should be of great help to fight COVID-19 in a strategic way. We aim to provide tangible evidence of the human mobility trends by comparing the day-by-day variations across the U.S. Large-scale public mobility at an aggregated level is observed by leveraging mobile device location data and the measures related to social distancing. Our study captures spatial and temporal heterogeneity as well as the sociodemographic variations regarding the pandemic propagation and the non-pharmaceutical interventions. All mobility metrics adapted capture decreased public movements after the national emergency declaration. The population staying home has increased in all states and becomes more stable after the stay-at-home order with a smaller range of fluctuation. There exists overall mobility heterogeneity between the income or population density groups. The public had been taking active responses, voluntarily staying home more, to the in-state confirmed cases while the stay-at-home orders stabilize the variations. The study suggests that the public mobility trends conform with the government message urging to stay home. We anticipate our data-driven analysis offers integrated perspectives and serves as evidence to raise public awareness and, consequently, reinforce the importance of social distancing while assisting policymakers.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
This paper continues to highlight trends in mobility and sociability in New York City (NYC), and supplements them with similar data from Seattle, WA, two of the cities most affected by COVID-19 in the U.S. Seattle may be further along in its recovery from the pandemic and ensuing lockdown than NYC, and may offer some insights into how travel patterns change. Finally, some preliminary findings from cities in China are discussed, two months following the lifting of their lockdowns, to offer a glimpse further into the future of recovery.
In response to the COVID-19 pandemic, National governments have applied lockdown restrictions to reduce the infection rate. We perform a massive analysis on near real-time Italian data provided by Facebook to investigate how lockdown strategies affect economic conditions of individuals and local governments. We model the change in mobility as an exogenous shock similar to a natural disaster. We identify two ways through which mobility restrictions affect Italian citizens. First, we find that the impact of lockdown is stronger in municipalities with higher fiscal capacity. Second, we find a segregation effect, since mobility restrictions are stronger in municipalities for which inequality is higher and where individuals have lower income per capita.