Do you want to publish a course? Click here

Interplay of chemical pressure and hydrogen insertion effects in $ {bf CeRhSn} $ from first principles

123   0   0.0 ( 0 )
 Added by Samir Matar Dr
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Investigations within the local spin density functional theory (LSDF) of the intermetallic hydride system $ {rm CeRhSnH_x} $ were carried out for discrete model compositions in the range $ 0.33 leq x_H leq 1.33 $. The aim of this study is to assess the change of the cerium valence state in the neighborhood of the experimental hydride composition, $ {rm CeRhSnH_{0.8}} $. In agreement with experiment, the analyses of the electronic and magnetic structures and of the chemical bonding properties point to trivalent cerium for $ 1 leq x_H leq 1.33 $. In contrast, for lower hydrogen amounts the hydride system stays in an intermediate-valent state for cerium, like in $ {rm CeRhSn} $. The influence of the insertion of hydrogen is addressed from both the volume expansion and chemical bonding effects. The latter are found to have the main influence on the change of Ce valence character. Spin polarized calculations point to a finite magnetic moment carried by the Ce $ 4f $ states; its magnitude increases with $ x_H $ in the range $ 1 leq x_H leq 1.33 $.



rate research

Read More

The electronic and magnetic structures of $ {rm ScFe_2} $ and of its dihydride $ {rm ScFe_2H_2} $ are self-consistently calculated within the density functional theory (DFT) using the all electron augmented spherical wave (ASW) method with the local spin density approximation (LSDA) for treating effects of exchange and correlation. The results of the enhancement of the magnetization upon hydrogen insertion are assessed within an analysis of the chemical bonding properties from which we suggest that both hydrogen bond with iron and cell expansion effects play a role in the change of the magnitude of magnetization. In agreement with average experimental findings for both the intermetallic system and its dihydride, the calculated Fermi contact terms $H_{FC}$ of the $^{57}$Fe Mossbauer spectroscopy for hyperfine field, at the two iron sites, exhibit an original inversion for the order of magnitudes upon hydriding.
60 - B. Arnaud , S. Leb`egue , 2003
The quasiparticle decays due to electron-electron interaction in silicon are studied by means of first-principles all-electron GW approximation. The spectral function as well as the dominant relaxation mechanisms giving rise to the finite life time of quasiparticles are analyzed. It is then shown that these life times and quasiparticle energies can be used to compute the complex dielectric function including many-body effects without resorting to empirical broadening to mimic the decay of excited states. This method is applied for the computation of the electron energy loss spectrum of silicon. The location and line shape of the plasmon peak are discussed in detail.
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corral and the possibility of the appearance of spin--polarized states. In order to classify the peaks in the calculated density of states with orbital quantum numbers we analyzed the problem in terms of a simple quantum mechanical circular well model. This model is also used to estimate the behaviour of the magnetization and energy with respect to the radius of the circular corral. The calculations are performed fully relativistically using the embedding technique within the Korringa-Kohn-Rostoker method.
Recently discovered class of 2D materials based on transition metal phosphorous trichalcogenides exhibit antiferromagnetic ground state, with potential applications in spintronics. Amongst them, FePS$ _{3} $ is a Mott insulator with a band gap of $sim$ 1.5 eV. This study using Raman spectroscopy along with first-principles density functional theoretical analysis examines the stability of its structure and electronic properties under pressure. Raman spectroscopy reveals two phase transitions at 4.6 GPa and 12 GPa marked by the changes in pressure coefficients of the mode frequencies and the number of symmetry allowed modes. FePS$_3$ transforms from the ambient monoclinic C2/m phase with a band gap of 1.54 eV to another monoclinic C2/m (band gap of 0.1 eV) phase at 4.6 GPa, followed by another transition at 12 GPa to the metallic trigonal P-31m phase. Our work complements recently reported high pressure X-ray diffraction studies.
The equation of state, structural behavior and phase stability of {alpha}-uranium have been investigated up to 1.3 TPa using density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and strong electronic correlations. The comparison of the enthalpies of Cmcm (alpha-U), bcc, hcp, fcc, and bct predicts that the aplpha-U phase is stable up to a pressure of ~285 GPa, above which it transforms to a bct-U phase. The enthalpy differences between the bct and bcc phase decrease with pressure, but bcc is energetically unfavorable at least up to 1.3 TPa, the upper pressure limit of this study. The enthalpies of the close-packed hcp and fcc phases are 0.7 eV and 1.0 eV higher than that of the stable bct-U phase at a pressure of 1.3 TPa, supporting the wide stability field of the bcc phase. The equation of state, the lattice parameters and the anisotropic compression parameters are in good agreement with experiment up 100 GPa and previous theory. The elastic constants at the equilibrium volume of alpha-U confirm our bulk modulus. This suggests that our simplified description of electronic structure of uranium captures the relevant physics and may be used to describe bonding and other light actinides that show itinerant electronic behavior especially at high pressure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا