No Arabic abstract
The electronic and magnetic structures of $ {rm ScFe_2} $ and of its dihydride $ {rm ScFe_2H_2} $ are self-consistently calculated within the density functional theory (DFT) using the all electron augmented spherical wave (ASW) method with the local spin density approximation (LSDA) for treating effects of exchange and correlation. The results of the enhancement of the magnetization upon hydrogen insertion are assessed within an analysis of the chemical bonding properties from which we suggest that both hydrogen bond with iron and cell expansion effects play a role in the change of the magnitude of magnetization. In agreement with average experimental findings for both the intermetallic system and its dihydride, the calculated Fermi contact terms $H_{FC}$ of the $^{57}$Fe Mossbauer spectroscopy for hyperfine field, at the two iron sites, exhibit an original inversion for the order of magnitudes upon hydriding.
Investigations within the local spin density functional theory (LSDF) of the intermetallic hydride system $ {rm CeRhSnH_x} $ were carried out for discrete model compositions in the range $ 0.33 leq x_H leq 1.33 $. The aim of this study is to assess the change of the cerium valence state in the neighborhood of the experimental hydride composition, $ {rm CeRhSnH_{0.8}} $. In agreement with experiment, the analyses of the electronic and magnetic structures and of the chemical bonding properties point to trivalent cerium for $ 1 leq x_H leq 1.33 $. In contrast, for lower hydrogen amounts the hydride system stays in an intermediate-valent state for cerium, like in $ {rm CeRhSn} $. The influence of the insertion of hydrogen is addressed from both the volume expansion and chemical bonding effects. The latter are found to have the main influence on the change of Ce valence character. Spin polarized calculations point to a finite magnetic moment carried by the Ce $ 4f $ states; its magnitude increases with $ x_H $ in the range $ 1 leq x_H leq 1.33 $.
The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, the comparison between theory and experiments for LSMO strained on the most commonly used substrates, shows an overall good agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium out-of-plane lattice constants points to possible defects in real samples. The inclusion of a Hubbard-like contribution on the Mn d states, according to the so-called LSDA+U approach, is rather ineffective from the structural point of view, but much more important from the electronic and magnetic point of view. In particular, full half-metallicity, which is missed within a bare density-functional approach, is recovered within LSDA+U, in agreement with experiments. Moreover, the half-metallic behavior, particularly relevant for spin-injection purposes, is independent on the chosen substrate and is achieved for all the considered in-plane lattice constants. More generally, strain effects are not seen to crucially affect the electronic structure: within the considered tetragonalization range, the minority gap is only slightly (i.e. by about 0.1-0.2 eV) affected by a tensile or compressive strain. Nevertheless, we show that the growth on a smaller in-plane lattice constant can stabilize the out-of-plane vs in-plane e_g orbital and significatively change their relative occupancy. Since e_g orbitals are key quantities for the double-exchange mechanism, strain effects are confirmed to be crucial for the resulting magnetic coupling.
We have combined the Boltzmann transport equation with an {it ab initio} approach to compute the thermoelectric coefficients of semiconductors. Electron-phonon, ionized impurity, and electron-plasmon scattering rates have been taken into account. The electronic band structure and average intervalley deformation potentials for the electron-phonon coupling are obtained from the density functional theory. The linearized Boltzmann equation has then been solved numerically beyond the relaxation time approximation. Our approach has been applied to crystalline silicon. We present results for the mobility, Seebeck coefficient, and electronic contribution to the thermal conductivity, as a function of the carrier concentration and temperature. The calculated coefficients are in good quantitative agreement with experimental results.
First-principles calculation predict that olivine Li4MnFeCoNiP4O16 has ferrotoroidic characteristic and ferrimagnetic configuration with magnetic moment of 1.56 muB per formula unit. The ferrotoroidicity of this material makes it a potential candidate for magnetoelectric materials . Based on the orbital-resolved density of states for the transtion-metal ions in Li4MnFeCoNiP4O16, the spin configuration for Mn2+,Fe3+,Co2+, and Ni2+ is t2g3eg2, t2g3eg2,t2g1t2g3eg1eg2, and t2g2t2g3eg1eg2, respectively. Density functional theory plus U (DFT+U) shows a indirect band gap of 1.25 eV in this predicted material, which is not simply related to the electronic conductivity in terms of being used as cathode material in rechargeable Li-ion batteries.
The anomalous plasmon linewidth dispersion (PLD) measured in K by vom Felde, Sprosser-Prou, and Fink (Phys. Rev. B 40, 10181 (1989)), has been attributed to strong dynamical electron-electron correlations. On the basis of ab initio response calculations, and detailed comparison with experiment, we show that the PLD of K is, in fact, dominated by decay into particle-hole excitations involving empty states of d-symmetry. For Li, we shed new light on the physics of the PLD. Our all-electron results illustrate the importance of ab initio methods for the study of electronic excitations.