Do you want to publish a course? Click here

Electronic structure of negatively curved graphene

454   0   0.0 ( 0 )
 Added by Dmitry Kolesnikov
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the electronic structure of graphene in the presence of either sevenfolds or eightfolds by using a gauge field-theory model. The graphene sheet with topological defects is considered as a negative cone surface with infinite Gaussian curvature at the center. The density of electronic states is calculated for a single seven- and eightfold as well as for a pair of sevenfolds with different morphology. The density of states at the Fermi energy is found to be zero in all cases except two sevenfolds with translational factor $M eq 0$.



rate research

Read More

The negatively-charged silicon-vacancy (SiV$^-$) center in diamond is a promising single photon source for quantum communications and information processing. However, the centers implementation in such quantum technologies is hindered by contention surrounding its fundamental properties. Here we present optical polarization measurements of single centers in bulk diamond that resolve this state of contention and establish that the center has a $langle111rangle$ aligned split-vacancy structure with $D_{3d}$ symmetry. Furthermore, we identify an additional electronic level and evidence for the presence of dynamic Jahn-Teller effects in the centers 738 nm optical resonance.
114 - H. Aoki , M. Koshino , D. Takeda 2003
We investigate the band structure of electrons bound on periodic curved surfaces. We have formulated Schr{o}dingers equation with the Weierstrass representation when the surface is minimal, which is numerically solved. Bands and the Bloch wavefunctions are basically determined by the way in which the ``pipes are connected into a network, where the Bonnet(conformal)-transformed surfaces have related electronic strucutres. We then examine, as a realisation of periodic surfaces, the tight-binding model for atomic networks (``sponges), where the low-energy spectrum coincides with those for continuous curved surfaces.
125 - Guodong Yu , Zewen Wu , Zhen Zhan 2019
In this paper, the electronic properties of 30{deg} twisted double bilayer graphene, which loses the translational symmetry due to the incommensurate twist angle, are studied by means of the tight-binding approximation. We demonstrate the interlayer decoupling in the low-energy region from various electronic properties, such as the density of states, effective band structure, optical conductivity and Landau level spectrum. However, at Q points, the interlayer coupling results in the appearance of new Van Hove singularities in the density of states, new peaks in the optical conductivity and importantly the 12-fold-symmetry-like electronic states. The k-space tight-binding method is adopted to explain this phenomenon. The electronic states at Q points show the charge distribution patterns more complex than the 30{deg} twisted bilayer graphene due to the symmetry decrease. These phenomena appear also in the 30{deg} twisted interface between graphene monolayer and AB stacked bilayer.
The results of measurements of XPS spectra and magnetic properties of graphene/Co composites prepared by adding of CoCl$_2$x6H$_2$O diluted in ethyl alcohol to highly-splitted graphite are presented. XPS Co 2p measurements show two sets of 2p$_{3/2,1/2}$-lines belonging to oxidized and metallic Co-atoms. This means that metal in composite is partly oxidized. This conclusion is confirmed by magnetic measurements which show the presence of the main (from the metal) and shifted (from the oxide) hysteresis loops. The presence of oxide layer on the metal surface prevents the metal from the full oxidation and (as shown by magnetic measurements) provides the preservation of ferromagnetic properties after long exposure in ambient air which enables the use of graphene/metal composites in spintronics devices.
134 - Igor Belegradek 2012
Motivated by a recent groundbreaking work of Ontaneda, we describe a sizable class of closed manifolds such that the product of each manifold in the class with the real line admits a complete metric of bounded negative sectional curvature which is an exponentially warped near one end and has finite volume near the other end.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا