Do you want to publish a course? Click here

Point-Contact Spectroscopy of Iron-Based Layered Superconductor LaO$_{0.9}$F$_{0.1-delta}$FeAs

434   0   0.0 ( 0 )
 Added by Lei Shan
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present point-contact spectroscopy data for junctions between a normal metal and the newly discovered F-doped superconductor LaO$_{0.9}$F$_{0.1-delta}$FeAs (F-LaOFeAs). A zero-bias conductance peak was observed and its shape and magnitude suggests the presence of Andreev bound states at the surface of F-LaOFeAs, which provides a possible evidence of an unconventional pairing symmetry with a nodal gap function. The maximum gap value $Delta_0approx3.9pm0.7$meV was determined from the measured spectra, in good agreement with the recent experiments on specific heat and lower critical field.



rate research

Read More

113 - G. F. Chen , Z. Li , G. Li 2008
We have employed a new route to synthesize single phase F-doped LaOFeAs compound and confirmed the superconductivity above 20 K in this Fe-based system. We show that the new superconductor has a rather high upper critical field of about 54 T. A clear signature of superconducting gap opening below T$_c$ was observed in the far-infrared reflectance spectra, with 2$Delta/textit{k}T_capprox$3.5-4.2. Furthermore, we show that the new superconductor has electron-type conducting carrier with a rather low carrier density.
310 - H.-J. Grafe , D. Paar , G. Lang 2008
We have performed 75As Nuclear Magnetic Resonance (NMR) measurements on aligned powders of the new LaO0.9F0.1FeAs superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggest that superconducting vortices contribute to the relaxation rate when the field is parallel to the c-axis but not for the perpendicular direction.
283 - Fengjie Ma , Zhong-Yi Lu 2008
We have studied the newly found superconductor compound LaO$_{1-x}$F$_x$FeAs through the first-principles density functional theory calculations. We find that the parent compound LaOFeAs is a quasi-2-dimensional antiferromgnetic semimetal with most carriers being electrons and with a magnetic moment of $2.3mu_B$ located around each Fe atom on the Fe-Fe square lattice. Furthermore this is a commensurate antiferromagnetic spin density wave due to the Fermi surface nesting, which is robust against the F-doping. The observed superconduction happens on the Fe-Fe antiferromagnetic layer, suggesting a new superconductivity mechanism, mediated by the spin fluctuations. An abrupt change on the Hall measurement is further predicted for the parent compound LaOFeAs.
292 - Z. W. Zhu , Z. A. Xu , X. Lin 2008
We report the first Nernst effect measurement on the new iron-based superconductor LaO$_{1-x}$F$_{x}$FeAs $(x=0.1)$. In the normal state, the Nernst signal is negative and very small. Below $T_{c}$ a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between $T_{c}$ and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.
195 - Xiyu Zhu , Huan Yang , Lei Fang 2008
By using a two-step method, we successfully synthesized the iron based new superconductor LaFeAsO_{0.9}F_{0.1-delta}$. The resistive transition curves under different magnetic fields were measured, leading to the determination of the upper critical field Hc2(T) of this new superconductor. The value of Hc2 at zero temperature is estimated to be about 50 Tesla roughly. In addition, the Hall effect and magnetoresistance were measured in wide temperature region. A negative Hall coefficient R_H has been found, implying a dominant conduction mainly by electron-like charge carriers in this material. The charge carrier density determined at 100 K is about 9.8E20cm^{-3}, which is close to the cuprate superconductors. It is further found that the magnetoresistance does not follow Kohlers law. Meanwhile, the different temperature dependence behaviors of resistivity, Hall coefficient, and magnetoresistance have anomalous properties at about 230 K, which may be induced by some exotic scattering mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا