Do you want to publish a course? Click here

Soft X-ray Absorption and Photoemission Studies of Ferromagnetic Mn-Implanted 3$C$-SiC

146   0   0.0 ( 0 )
 Added by Gyongsok Song
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), and resonant photoemission spectroscopy (RPES) measurements of Mn-implanted 3$C$-SiC (3$C$-SiC:Mn) and carbon-incorporated Mn$_{5}$Si$_{2}$ (Mn$_{5}$Si$_{2}$:C). The Mn 2$p$ core-level XPS and XAS spectra of 3$C$-SiC:Mn and Mn$_{5}$Si$_{2}$:C were similar to each other and showed intermediate behaviors between the localized and itinerant Mn 3$d$ states. The intensity at the Fermi level was found to be suppressed in 3$C$-SiC:Mn compared with Mn$_{5}$Si$_{2}$:C. These observations are consistent with the formation of Mn$_{5}$Si$_{2}$:C clusters in the 3$C$-SiC host, as observed in a recent transmission electron microscopy study.



rate research

Read More

The structural, electronic and optical properties of cubic double perovskite BaCoWO6 have been studied. Neutron powder diffraction data is collected on this sample from 6K to 300K. The crystal structure is face centered cubic, space group being Fm3m (No. 225). We did not find evidence for long range magnetic ordering in this system in this temperature range. The band-gap is estimated using Uv-vis spectroscopy. The Co-K edge X-ray absorption (XAFS) spectra of Ba2CoWO6 was analysed together with those Co-foil, which was used as reference compounds. X-ray photoemission spectroscopy (XPS), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies give the insight of the electronic and structural information on the Co local environment for Ba2CoWO6.
173 - H. Suzuki , K. Zhao , G. Shibata 2014
The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS) Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$, which is isostructural to so-called 122-type Fe-based superconductors, are investigated by x-ray absorption spectroscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn $L_{2,3}$-edge XAS indicates that the doped Mn atoms have the valence 2+ and strongly hybridize with the $4p$ orbitals of the tetrahedrally coordinating As ligands. The Mn $3d$ partial density of states (PDOS) obtained by RPES shows a peak around 4 eV and relatively high between 0-2 eV below the Fermi level ($E_{F}$) with little contribution at $E_{F}$, similar to that of the archetypal DMS Ga$_{1-x}$Mn$_{x}$As. This energy level creates $d^{5}$ electron configuration with $S=5/2$ local magnetic moments at the Mn atoms. Hole carriers induced by K substitution for Ba atoms go into the top of the As $4p$ valence band and are weakly bound to the Mn local spins. The ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in Ba$_{1-x}$K$_{x}$(Zn$_{1-y}$Mn$_{y}$)$_{2}$As$_{2}$
By means of photoemission and x-ray absorption spectroscopy, we have studied the electronic structure of (Ni,Zn,Fe,Ti)$_{3}$O$_{4}$ thin films, which exhibits a cluster glass behavior with a spin-freezing temperature $T_f$ of $sim 230$ K and photo-induced magnetization (PIM) below $T_f$. The Ni and Zn ions were found to be in the divalent states. Most of the Fe and Ti ions in the thin films were trivalent (Fe$^{3+}$) and tetravalent (Ti$^{4+}$), respectively. While Ti doping did not affect the valence states of the Ni and Zn ions, a small amount of Fe$^{2+}$ ions increased with Ti concentration, consistent with the proposed charge-transfer mechanism of PIM.
365 - Y.D. Park , J.D. Lim , K.S. Suh 2003
Highly p-type GaAs:C was ion-implanted with Mn at differing doses to produce Mn concentrations in the 1 - 5 at.% range. In comparison to LT-GaAs and n+GaAs:Si samples implanted under the same conditions, transport and magnetic properties show marked differences. Transport measurements show anomalies, consistent with observed magnetic properties and with epi- LT-(Ga,Mn)As, as well as the extraordinary Hall Effect up to the observed magnetic ordering temperature (T_C). Mn ion-implanted p+GaAs:C with as-grown carrier concentrations > 10^20 cm^-3 show remanent magnetization up to 280 K.
We report a combined study for the electronic structures of ferromagnetic CeAgSb$_2$ using soft X-ray absorption (XAS), magnetic circular dichroism (XMCD), and angle-resolved photoemission (ARPES) spectroscopies. The Ce $M_{4, 5}$ XAS spectra show very small satellite structures, reflecting a strongly localized character of the Ce $4f$ electrons. The linear dichroism effects in the Ce $M_{4, 5}$ XAS spectra demonstrate the ground state Ce $4f$ symmetry of $Gamma{_6}$, the spatial distribution of which is directed along the $c$-axis. The XMCD results give support to the picture of local-moment magnetism in CeAgSb$_2$. Moreover it is also found that the theoretical band dispersions for LaAgSb$_2$ provides better description of the ARPES band structures than those for CeAgSb$_2$. Nevertheless, ARPES spectra at the Ce $3d$-$4f$ resonance show the momentum dependence for the intensity ratio between Ce $4f^{1}_{5/2}$ and $4f^{1}_{7/2}$ peaks in a part of the Brillouin zone, suggesting the non-negligible momentum dependent hybridization effect between the Ce $4f$ and the conduction electrons. This is associated with the moderate mass enhancement in CeAgSb$_2$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا