Do you want to publish a course? Click here

Scaling breakdown in flow fluctuations on complex networks

262   0   0.0 ( 0 )
 Added by Yamir Moreno Vega
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a model of random diffusion to investigate flow fluctuations in complex networks. We derive an analytical law showing that the dependence of fluctuations with the mean traffic in a network is ruled by the delicate interplay of three factors, respectively of dynamical, topological and statistical nature. In particular, we demonstrate that the existence of a power-law scaling characterizing the flow fluctuations at every node in the network can not be claimed for. We show the validity of this scaling breakdown under quite general topological and dynamical situations by means of different traffic algorithms and by analyzing real data.



rate research

Read More

We investigate the effect of a specific edge weighting scheme $sim (k_i k_j)^{beta}$ on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter $beta$ and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter $beta$, we find that network resilience to cascading overloads and network throughput is optimal for the same value of $beta$ over the range of node capacities and available bandwidth.
We define a minimal model of traffic flows in complex networks containing the most relevant features of real routing schemes, i.e. a trade--off strategy between topological-based and traffic-based routing. The resulting collective behavior, obtained analytically for the ensemble of uncorrelated networks, is physically very rich and reproduces results recently observed in traffic simulations on scale-free networks. We find that traffic control is useless in homogeneous graphs but may improves global performance in inhomogeneous networks, enlarging the free-flow region in parameter space. Traffic control also introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner.
Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.
162 - Jiuhua Zhao , Qipeng Liu , 2014
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
The threshold model has been widely adopted as a classic model for studying contagion processes on social networks. We consider asymmetric individual interactions in social networks and introduce a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption and persuasion in cascading processes on complex networks. It is found that with the introduction of the persuasion mechanism, the system may become more vulnerable to global cascades, and the effects of persuasion tend to be more significant in heterogeneous networks than those in homogeneous networks: a comparison between heterogeneous and homogeneous networks shows that under weak persuasion, heterogeneous networks tend to be more robust against random shocks than homogeneous networks; whereas under strong persuasion, homogeneous networks are more stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is sufficiently dense.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا