Do you want to publish a course? Click here

Information Filtering via Self-Consistent Refinement

86   0   0.0 ( 0 )
 Added by Tao Zhou
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recommender systems are significant to help people deal with the world of information explosion and overload. In this Letter, we develop a general framework named self-consistent refinement and implement it be embedding two representative recommendation algorithms: similarity-based and spectrum-based methods. Numerical simulations on a benchmark data set demonstrate that the present method converges fast and can provide quite better performance than the standard methods.

rate research

Read More

98 - Duo Sun , Tao Zhou , Jian-Guo Liu 2009
In this Brief Report, we propose a new index of user similarity, namely the transferring similarity, which involves all high-order similarities between users. Accordingly, we design a modified collaborative filtering algorithm, which provides remarkably higher accurate predictions than the standard collaborative filtering. More interestingly, we find that the algorithmic performance will approach its optimal value when the parameter, contained in the definition of transferring similarity, gets close to its critical value, before which the series expansion of transferring similarity is convergent and after which it is divergent. Our study is complementary to the one reported in [E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E {bf 73} 026120 (2006)], and is relevant to the missing link prediction problem.
In this paper, we propose a novel method to compute the similarity between congeneric nodes in bipartite networks. Different from the standard Person correlation, we take into account the influence of nodes degree. Substituting this new definition of similarity for the standard Person correlation, we propose a modified collaborative filtering (MCF). Based on a benchmark database, we demonstrate the great improvement of algorithmic accuracy for both user-based MCF and object-based MCF.
Heat conduction process has recently found its application in personalized recommendation [T. Zhou emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction (BHC), which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix and Delicious datasets could be improved by 43.5%, 55.4% and 19.2% compared with the standard heat conduction algorithm, and the diversity is also increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
In recent years, many efforts have been addressed on collision avoidance of collectively moving agents. In this paper, we propose a modified version of the Vicsek model with adaptive speed, which can guarantee the absence of collisions. However, this strategy leads to an aggregated state with slowly moving agents. We therefore further introduce a certain repulsion, which results in both faster consensus and longer safe distance among agents, and thus provides a powerful mechanism for collective motions in biological and technological multi-agent systems.
High-order, beyond-pairwise interdependencies are at the core of biological, economic, and social complex systems, and their adequate analysis is paramount to understand, engineer, and control such systems. This paper presents a framework to measure high-order interdependence that disentangles their effect on each individual pattern exhibited by a multivariate system. The approach is centred on the local O-information, a new measure that assesses the balance between synergistic and redundant interdependencies at each pattern. To illustrate the potential of this framework, we present a detailed analysis of music scores from J.S. Bach, which reveals how high-order interdependence is deeply connected with highly non-trivial aspects of the musical discourse. Our results place the local O-information as a promising tool of wide applicability, which opens new perspectives for analysing high-order relationships in the patterns exhibited by complex systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا