Do you want to publish a course? Click here

Consensus of self-driven agents with avoidance of collisions

122   0   0.0 ( 0 )
 Added by Tao Zhou
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, many efforts have been addressed on collision avoidance of collectively moving agents. In this paper, we propose a modified version of the Vicsek model with adaptive speed, which can guarantee the absence of collisions. However, this strategy leads to an aggregated state with slowly moving agents. We therefore further introduce a certain repulsion, which results in both faster consensus and longer safe distance among agents, and thus provides a powerful mechanism for collective motions in biological and technological multi-agent systems.



rate research

Read More

107 - Jie Ren , Tao Zhou , 2008
Recommender systems are significant to help people deal with the world of information explosion and overload. In this Letter, we develop a general framework named self-consistent refinement and implement it be embedding two representative recommendation algorithms: similarity-based and spectrum-based methods. Numerical simulations on a benchmark data set demonstrate that the present method converges fast and can provide quite better performance than the standard methods.
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Levy distributions; we also show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.
In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using a spectral expansion formulation known as the kernel embedding of the conditional distribution. To respect the geometry of the data, we employ this spectral expansion using a set of data-driven basis functions obtained from the diffusion maps algorithm. The theoretical error estimate suggests that the error bound of the approximate data-driven likelihood function is independent of the variance of the basis functions, which allows us to determine the amount of training data for accurate likelihood function estimations. Supporting numerical results to demonstrate the robustness of the data-driven likelihood functions for parameter estimation are given on instructive examples involving stochastic and deterministic differential equations. When the dimension of the data manifold is strictly less than the dimension of the ambient space, we found that the proposed approach (which does not require the knowledge of the data manifold) is superior compared to likelihood functions constructed using standard parametric basis functions defined on the ambient coordinates. In an example where the data manifold is not smooth and unknown, the proposed method is more robust compared to an existing polynomial chaos surrogate model which assumes a parametric likelihood, the non-intrusive spectral projection.
The study of networks has grown into a substantial interdisciplinary endeavour that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process, empirical or synthetic, or they can represent entirely different systems in different disciplines. Since the mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. While we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 individual networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and in each case we expose non-trivial structure. For example we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties; whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations $Phi_P$ exhibits a power-law decay proportional to $f^{-5/3-2}$ in the region corresponding to the turbulence inertial subrange and at relatively large scales, $Phi_Psim f^{-2}$. Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا