Do you want to publish a course? Click here

The Fundamental Constants in Physics and their Time Dependence

140   0   0.0 ( 0 )
 Added by Harald Fritzsch
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We discuss the fundamemtal constants in the Standard Model of particle physics, in particular possible changes of these constants on the cosmological time scale. The Grand Unification of the observed strong, electromagnetic and weak interactions implies relations between time variation of the finestructure constant alpha and the QCD scale $Lambda_c$. The astrophysical observation of a variation implies a time variation of $10^{-15} / year$. Several experiments in Quantum Optics, which were designed to look for a time variation of $Lambda_c$, are discussed.

rate research

Read More

104 - H. Fritzsch 2009
We discuss the fundamental constants of physics in the Standard Model and possible changes of these constants on the cosmological time scale. The Grand Unification of the strong, electromagnetic and weak interactions implies relations between the time variation of the finestructure constant and of the QCD scale. An experiment in quantum optics at the MPQ in Munich, which was designed to look for a time variation of the QCD scale, is discussed.
A new method for measuring a possible time dependence of the fine-structure constant ($alpha$) is proposed. The method is based on the level-crossing in two-electron highly-charged ions facilitating resonance laser measurements of the distance between the levels at the point of crossing. This provides an enhancement factor of about $10^{3}$ in Helium-like Europium and thus reduces the requirements for the relative accuracy of resonance laser measurements at about $10^{-12}$.
Precise experimental setups for detection of variation of fundamental constants, scalar dark matter, or gravitational waves, such as laser interferometers, optical cavities and resonant-mass detectors, are directly linked to measuring changes in material size. Here we present calculated and experiment-derived estimates for both $alpha$- and $mu$-dependence of lattice constants and bond lengths of selected solid-state materials and diatomic molecules that are needed for interpretation of such experiments.
We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine structure constant and Newtons constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided showing that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance $Lambda$CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level $gtrsim3sigma$. Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time variation of the dark matter particles should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the micro and macro connection (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS).
137 - Rodger I. Thompson 2017
The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuum Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as $mu$ and $alpha$ provide important constraints on the parameter space of new physics and cosmologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا