The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuum Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as $mu$ and $alpha$ provide important constraints on the parameter space of new physics and cosmologies.
Euclid is a European Space Agency medium class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 programme. The main goal of Euclid is to understand the origin of the accelerated expansion of the Universe. Euclid will explore the expansion history of the Universe and the evolution of cosmic structures by measuring shapes and redshifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclids Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational constant, as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the content of the quantum vacuum.
This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar $phi$ with respect to the natural log of the scale factor $a$, $beta(phi)=frac{d phi}{d ln(a)}$. Once the beta function is specified, modulo a boundary condition, the evolution of the scalar $phi$ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated beta potential is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that $Lambda$CDM is part of the family of quintessence cosmology power law potentials with a power of zero.
We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the 4He abundance), of the nucleon mass (for deuterium) and of A=3,4,7 binding energies (for 3He, 6Li and 7Li). A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass hat{m} equiv (m_u+m_d)/2. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.
The values of the fundamental constants such as $mu = m_P/m_e$, the proton to electron mass ratio and $alpha$, the fine structure constant, are sensitive to the product $sqrt{zeta_x^2(w+1)}$ where $zeta_x$ is a coupling constant between a rolling scalar field responsible for the acceleration of the expansion of the universe and the electromagnetic field with x standing for either $mu$ or $alpha$. The dark energy equation of state $w$ can assume values different than $-1$ in cosmologies where the acceleration of the expansion is due to a scalar field. In this case the value of both $mu$ and $alpha$ changes with time. The values of the fundamental constants, therefore, monitor the equation of state and are a valuable tool for determining $w$ as a function of redshift. In fact the rolling of the fundamental constants is one of the few definitive discriminators between acceleration due to a cosmological constant and acceleration due to a quintessence rolling scalar field. $w$ is often given in parameterized form for comparison with observations. In this manuscript the predicted evolution of $mu$, is calculated for a range of parameterized equation of state models and compared to the observational constraints on $Delta mu / mu$. We find that the current limits on $Delta mu / mu$ place significant constraints on linear equation of state models and on thawing models where $w$ deviates from $-1$ at late times. They also constrain non-dynamical models that have a constant $w$ not equal to $-1$. These constraints are an important compliment to geometric tests of $w$ in that geometric tests are sensitive to the evolution of the universe before the epoch of observation while fundamental constants are sensitive to the evolution of the universe after the observational epoch. Abstract truncated.