Do you want to publish a course? Click here

Order parameters in the Verwey phase transition

300   0   0.0 ( 0 )
 Added by Przemyslaw Piekarz
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Verwey phase transition in magnetite is analyzed on the basis of the Landau theory. The free energy functional is expanded in a series of components belonging to the primary and secondary order parameters. A low-temperature phase with the monoclinic P2/c symmetry is a result of condensation of two order parameters X_3 and Delta_5 . The temperature dependence of the shear elastic constant C_44 is derived and the mechanism of its softening is discussed.



rate research

Read More

In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing interactions, set on a ring with an odd number of sites. When only the dominant interaction is antiferromagnetic, and thus induces topological frustration, the standard antiferromagnetic order (expressed by the magnetization) is destroyed. When also the second interaction turns from ferro to antiferro, an antiferromagnetic order characterized by a site-dependent magnetization which varies in space with an incommensurate pattern, emerges. This modulation results from a ground state degeneracy, which allows to break the translational invariance. The transition between the two cases is signaled by a discontinuity in the first derivative of the ground state energy and represents a quantum phase transition induced by a special choice of boundary conditions.
Ginzburg-Landau theory of continuous phase transitions implicitly assumes that microscopic changes are negligible in determining the thermodynamic properties of the system. In this work we provide an example that clearly contrasts with this assumption. We show that topological frustration can change the nature of a second order quantum phase transition separating two different ordered phases. Even more remarkably, frustration is triggered simply by a suitable choice of boundary conditions in a 1D chain. While with every other BC each of two phases is characterized by its own local order parameter, with frustration no local order can survive. We construct string order parameters to distinguish the two phases, but, having proved that topological frustration is capable of altering the nature of a systems phase transition, our results pose a clear challenge to the current understanding of phase transitions in complex quantum systems.
Contrary to the conventional wisdom in Hermitian systems, a continuous quantum phase transition between gapped phases is shown to occur without closing the energy gap $Delta$ in non-Hermitian quantum many-body systems. Here, the relevant length scale $xi simeq v_{rm LR}/Delta$ diverges because of the breakdown of the Lieb-Robinson bound on the velocity (i.e., unboundedness of $v_{rm LR}$) rather than vanishing of the energy gap $Delta$. The susceptibility to a change in the system parameter exhibits a singularity due to nonorthogonality of eigenstates. As an illustrative example, we present an exactly solvable model by generalizing Kitaevs toric-code model to a non-Hermitian regime.
79 - A. Bianchi 2002
We investigated the magnetic field dependence of the superconducting phase transition in heavy fermion CeCoIn_5 (T_c = 2.3 K) using specific heat, magneto-caloric effect, and thermal expansion measurements. The superconducting transition becomes first order when the magnetic field is oriented along the 001 crystallographic direction with a strength greater that 4.7 T, and transition temperature below T_0 ~ 0.31 T_c. The change from second order at lower fields is reflected in strong sharpening of both specific heat and thermal expansion anomalies associated with the phase transition, a strong magnetocaloric effect, and a step-like change in the sample volume. The first order superconducting phase transition in CeCoIn_5 is caused by Pauli limiting in type-II superconductors, and was predicted theoretically in the mid 1960s. We do not see evidence for the inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state (predicted by an alternative theory also dating back to mid-60s) in CeCoIn_5 with field H || [001].
Phase transition and critical properties of Ising-like spin-orbital interacting systems in 2-dimensional triangular lattice are investigated. We first show that the ground state of the system is a composite spin-orbital ferro-ordered phase. Though Landau effective field theory predicts the second-order phase transition of the composite spin-orbital order, however, the critical exponents obtained by the renormalization group approach demonstrate that the spin-orbital order-disorder transition is far from the second-order, rather, it is more close to the first-order, implying that the widely observed first-order transition in many transition-metal oxides may be intrinsic. The unusual critical behavior near the transition point is attributed to the fractionalization of the composite order parameter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا