Do you want to publish a course? Click here

Logarithmically Enhanced Corrections to the Decay Rate and Forward Backward Asymmetry in anti-B --> X(s) l+ l-

120   0   0.0 ( 0 )
 Added by Tobias Hurth
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We study logarithmically enhanced electromagnetic corrections to the decay rate in the high dilepton invariant mass region as well as corrections to the forward backward asymmetry (FBA) of the inclusive rare decay $bar{B} to X_s ell^+ ell^-$. As expected, the relative effect of these corrections in the high dilepton mass region is around -8% for the muonic final state and therefore much larger than in the low dilepton mass region. We also present a complete phenomenological analysis, to improved NNLO accuracy, of the dilepton mass spectrum and the FBA integrated in the low dilepton mass region, including a new approach to the zero of the FBA. The latter represents one of the most precise predictions in flavour physics with a theoretical uncertainty of order 5%. We find $(q_0^2)_{mumu} = (3.50 pm 0.12) gev^2$. For the high dilepton invariant mass region, we have ${cal B}(bar Bto X_smumu)_{rm high} = (2.40^{+0.69}_{-0.62}) times 10^{-7}$. The dominant uncertainty is due to the $1/m_b$ corrections and can be significantly reduced in the future. For the low dilepton invariant mass region, we confirm previous results up to small corrections.



rate research

Read More

264 - T. Binoth , N. Kauer , P. Mertsch 2008
A calculation of the loop-induced gluon-fusion process gg --> Z(photon)Z(photon) --> l anti-l l anti-l is presented, which provides an important background for Higgs boson searches in the H --> ZZ channel at the LHC. We find that the photon contribution is important for Higgs masses below the Z-pair threshold and that the gg-induced process yields a correction of about 15% relative to the NLO QCD prediction for the q anti-q-induced process when only a M(l anti-l), M(l anti-l) > 5 GeV cut is applied.
104 - Altug Arda 2005
Using the most general effective Hamiltonian comprising scalar,vector and tensor type interactions, we have written the branching ratio, the forward-backward (FB) asymmetry and the normalized FB asymmetry as functions of the new Wilson coefficients. It is found that the branching ratio depends on all new coefficients,but the dependence of asymmetries on coefficients could be analyzed only for one Wilson coefficient.
The forward-backward (FB) asymmetry of $b$ quarks in $e^+e^-$ collisions at the Z pole measured at LEP, $A_{FB}^{0,b} = 0.0992pm0.0016$, remains today the electroweak precision observable with the largest disagreement (2.4$sigma$) with respect to the Standard Model prediction, $(A_{FB}^{0,b})_{_{rm th}} = 0.1030 pm 0.0002$. Beyond the dominant statistical uncertainties, QCD effects, such as $b$-quark showering and hadronization, are the leading sources of $A_{FB}^{0,b}$ systematic uncertainty, and have not been revised in the last twenty years. We reassess the QCD uncertainties of the eight original $A_{FB}^{0,b}$ LEP measurements, using modern parton shower PYTHIA-8 and PYTHIA-8 + VINCIA simulations with nine different implementations of soft and collinear radiation as well as of parton fragmentation. Our analysis, combined with NNLO massive $b$-quark corrections independently computed recently, indicates total propagated QCD uncertainties of $sim$0.7% and $sim$0.3% for the lepton-charge and jet-charge analyses, respectively, that are about a factor of two smaller than those of the original LEP results. Accounting for such updated QCD effects leads to a new $A_{FB}^{0,b} = 0.0996pm0.0016$ average, with a data-theory tension slightly reduced from 2.4$sigma$ to 2.1$sigma$. Confirmation or resolution of this long-term discrepancy requires a new high-luminosity $e^+e^-$ collider collecting orders-of-magnitude more data at the Z pole to significantly reduce the $A_{FB}^{0,b}$ statistical uncertainties.
168 - Joaquim Matias 2012
It has been argued recently that transverse asymmetries that are expected to be shielded from the presence of the S-wave (Kpi) pairs originating from the decay of a scalar K0* meson, are indeed affected by this pollution due to the impossibility to extract cleanly the normalization for these observables. In this short note we show how using folded distributions, which is nowadays the preferred method to obtain the information from the 4-body decay mode B-> K*(-> Kpi) l+l-, one can easily bypass this problem and extract the clean observables P_{1,2,3} and also P_{4,5,6} in a way completely free from this pollution including all lepton mass corrections. We also show that in case one insists in using uniangular distributions to extract these observables it is possible to reduce this pollution to just lepton mass suppressed terms. On the contrary, the S_i observables, that are by definition normalized by the full differential decay distribution, will indeed suffer from this pollution via their normalization. Finally, we also present a procedure to minimize the error associated to neglecting lepton mass corrections in the distribution defining a massless-improved limit.
206 - Michael Wick 2009
The rare decay B to K* (to K pi) mu+ mu- is regarded as one of the crucial channels for B physics since its angular distribution gives access to many observables that offer new important tests of the Standard Model and its extensions. We point out a number of correlations among various observables which will allow a clear distinction between different New Physics (NP) scenarios. Furthermore, we discuss the decay B to K* nu anti-nu which allows for a transparent study of Z penguin effects in NP frameworks in the absence of dipole operator contributions and Higgs penguin contributions. We study all possible observables in B to K* nu anti-nu and the related b to s transitions B to K nu anti-nu and B to X_s nu anti-nu in the context of the SM and various NP models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا