Do you want to publish a course? Click here

Gluon-induced QCD corrections to pp --> ZZ --> l anti-l l anti-l

278   0   0.0 ( 0 )
 Added by Nikolas Kauer
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

A calculation of the loop-induced gluon-fusion process gg --> Z(photon)Z(photon) --> l anti-l l anti-l is presented, which provides an important background for Higgs boson searches in the H --> ZZ channel at the LHC. We find that the photon contribution is important for Higgs masses below the Z-pair threshold and that the gg-induced process yields a correction of about 15% relative to the NLO QCD prediction for the q anti-q-induced process when only a M(l anti-l), M(l anti-l) > 5 GeV cut is applied.



rate research

Read More

110 - Nikolas Kauer 2013
WW/ZZ interference for Higgs signal and continuum background as well as signal-background interference is studied for same-flavour l anti-nu_l anti-l nu_l final states produced in gluon-gluon scattering at the LHC for light and heavy Higgs masses with minimal and realistic experimental selection cuts. For the signal cross section, we find WW/ZZ interference effects of O(5%) at M_H = 126 GeV. For M_H >= 200 GeV, we find that WW/ZZ interference is negligible. For the gg continuum background, we also find that WW/ZZ interference is negligible. As general rule, we conclude that non-negligible WW/ZZ interference effects occur only if at least one weak boson of the pair is dominantly off-shell due to kinematic constraints. The subdominant weak boson pair contribution induces a correction to the signal-background interference, which is at the few percentage point level before search selection cuts. Optimised selection cuts for M_H >~ 600 GeV are suggested.
We study logarithmically enhanced electromagnetic corrections to the decay rate in the high dilepton invariant mass region as well as corrections to the forward backward asymmetry (FBA) of the inclusive rare decay $bar{B} to X_s ell^+ ell^-$. As expected, the relative effect of these corrections in the high dilepton mass region is around -8% for the muonic final state and therefore much larger than in the low dilepton mass region. We also present a complete phenomenological analysis, to improved NNLO accuracy, of the dilepton mass spectrum and the FBA integrated in the low dilepton mass region, including a new approach to the zero of the FBA. The latter represents one of the most precise predictions in flavour physics with a theoretical uncertainty of order 5%. We find $(q_0^2)_{mumu} = (3.50 pm 0.12) gev^2$. For the high dilepton invariant mass region, we have ${cal B}(bar Bto X_smumu)_{rm high} = (2.40^{+0.69}_{-0.62}) times 10^{-7}$. The dominant uncertainty is due to the $1/m_b$ corrections and can be significantly reduced in the future. For the low dilepton invariant mass region, we confirm previous results up to small corrections.
This report was prepared in the context of the LPCC Electroweak Precision Measurements at the LHC WG and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. The NLO fixed-order predictions have been scrutinized at the technical level, using exactly the same inputs, setup and perturbative accuracy, in order to quantify the level of agreement of different implementations of the same calculation. A dedicated comparison, again at the technical level, of three codes that reach next-to-next-to-leading-order (NNLO) accuracy in quantum chromodynamics (QCD) for the total cross section has also been performed. These fixed-order results are a well-defined reference that allows a classification of the impact of higher-order sets of radiative corrections. Several examples of higher-order effects due to the strong or the EW interaction are discussed in this common framework. Also the combination of QCD and EW corrections is discussed, together with the ambiguities that affect the final result, due to the choice of a specific combination recipe.
We calculate O(alpha_s) two-loop virtual corrections to the differential decay width dGamma(B --> X_s l^+ l^-)/ds, where s is the invariant mass squared of the lepton pair. We also include those contributions from gluon bremsstrahlung which are needed to cancel infrared and collinear singularities present in the virtual corrections. Our calculation is restricted to the range 0.05 < s/m_b^2 < 0.25 where the effects from resonances are small. The new contributions drastically reduce the renormalization scale dependence of existing results for dGamma(B --> X_s l^+ l^-)/ds. For the corresponding branching ratio (restricted to the above s-range) the renormalization scale uncertainty gets reduced from +/- 13% to +/- 6.5%.
We present a new calculation of the $Dtopi$ and $D to K$ form factors from QCD light-cone sum rules. The $overline{MS}$ scheme for the $c$-quark mass is used and the input parameters are updated. The results are $f^+_{Dpi}(0)= 0.67^{+0.10}_{-0.07}$, $f^+_{DK}(0)=0.75^{+0.11}_{-0.08}$ and $f^+_{Dpi}(0)/f^+_{DK}(0)=0.88 pm 0.05$. Combining the calculated form factors with the latest CLEO data, we obtain $|V_{cd}|=0.225pm 0.005 pm 0.003 ^{+0.016}_{-0.012}$ and $|V_{cd}|/|V_{cs}|= 0.236pm 0.006pm 0.003pm 0.013$ where the first and second errors are of experimental origin and the third error is due to the estimated uncertainties of our calculation. We also evaluate the form factors $f^-_{Dpi}$ and $f^-_{DK}$ and predict the slope parameters at $q^2=0$. Furthermore, calculating the form factors from the sum rules at $q^2<0$, we fit them to various parameterizations. After analytic continuation, the shape of the $Dto pi,K $ form factors in the whole semileptonic region is reproduced, in a good agreement with experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا