Do you want to publish a course? Click here

The logarithmic perturbation theory for bound states in spherical-symmetric potentials via the $hbar$-expansions

264   0   0.0 ( 0 )
 Added by Irina Dobrovolska
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem for the spherical anharmonic oscillator and the screened Coulomb potential is developed. Based upon the $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As examples, the perturbation expansions for the energy eigenvalues of the quartic anharmonic oscillator and the Debye potential are considered.



rate research

Read More

The explicit semiclassical treatment of logarithmic perturbation theory for the bound-state problem within the framework of the radial Klein-Gordon equation with attractive real-analytic screened Coulomb potentials, contained time-component of a Lorentz four-vector and a Lorentz-scalar term, is developed. Based upon $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues for the Hulthen potential containing the vector part as well as the scalar component are considered.
72 - S. Ejima , Y. Ogata 2019
We extend the new perturbation formula of equilibrium states by Hastings to KMS states of general $W^*$-dynamical systems.
The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem for the spherical anharmonic oscillator is developed. Based upon the $hbar$-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues of the quartic anharmonic oscillator are considered.
This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dimension along with a preliminary scattering result for convolution-type perturbations. This work complements the results obtained in [DL] by providing a detailed analysis of the perturbation theory for the one-dimensional thermal Hamiltonian. In more detail the following result are established: the regularity and decay properties for elements in the domain of the unperturbed thermal Hamiltonian; the determination of a class of self-adjoint and relatively compact perturbations of the thermal Hamiltonian; the proof of the existence and completeness of wave operators for a subclass of such potentials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا