Do you want to publish a course? Click here

Unitary processes with independent increments and representations of Hilbert tensor algebras

166   0   0.0 ( 0 )
 Added by Lingaraj Sahu
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.



rate research

Read More

In this paper, we study unitary Gaussian processes with independent increments with which the unitary equivalence to a Hudson-Parthasarathy evolution systems is proved. This gives a generalization of results in [16] and [17] in the absence of the stationarity condition.
This is a continuation of the earlier work cite{SSS} to characterize stationary unitary increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with a technical assumption on the domain of the generator, unitary equivalence of the processes to the solution of Hudson-Parthasarathy equation is proved.
167 - F. Klebaner , R. Liptser 2005
We consider a continuous time version of Cramers theorem with nonnegative summands $ S_t=frac{1}{t}sum_{i:tau_ile t}xi_i, t toinfty, $ where $(tau_i,xi_i)_{ige 1}$ is a sequence of random variables such that $tS_t$ is a random process with independent increments.
In this paper, we consider the product space for two processes with independent increments under nonlinear expectations. By introducing a discretization method, we construct a nonlinear expectation under which the given two processes can be seen as a new process with independent increments.
We prove that every positive semidefinite matrix over the natural numbers that is eventually 0 in each row and column can be factored as the product of an upper triangular matrix times a lower triangular matrix. We also extend some known results about factorization with respect to tensor products of nest algebras. Our proofs use the theory of reproducing kernel Hilbert spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا