Do you want to publish a course? Click here

Product space for two processes with independent increments under nonlinear expectations

123   0   0.0 ( 0 )
 Added by Mingshang Hu
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we consider the product space for two processes with independent increments under nonlinear expectations. By introducing a discretization method, we construct a nonlinear expectation under which the given two processes can be seen as a new process with independent increments.



rate research

Read More

167 - F. Klebaner , R. Liptser 2005
We consider a continuous time version of Cramers theorem with nonnegative summands $ S_t=frac{1}{t}sum_{i:tau_ile t}xi_i, t toinfty, $ where $(tau_i,xi_i)_{ige 1}$ is a sequence of random variables such that $tS_t$ is a random process with independent increments.
In this paper, we study unitary Gaussian processes with independent increments with which the unitary equivalence to a Hudson-Parthasarathy evolution systems is proved. This gives a generalization of results in [16] and [17] in the absence of the stationarity condition.
This is a continuation of the earlier work cite{SSS} to characterize stationary unitary increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with a technical assumption on the domain of the generator, unitary equivalence of the processes to the solution of Hudson-Parthasarathy equation is proved.
The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.
Under the sublinear expectation $mathbb{E}[cdot]:=sup_{thetain Theta} E_theta[cdot]$ for a given set of linear expectations ${E_theta: thetain Theta}$, we establish a new law of large numbers and a new central limit theorem with rate of convergence. We present some interesting special cases and discuss a related statistical inference problem. We also give an approximation and a representation of the $G$-normal distribution, which was used as the limit in Peng (2007)s central limit theorem, in a probability space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا