Do you want to publish a course? Click here

Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background II: Partial Sky Coverage and Inhomogeneous Noise

290   0   0.0 ( 0 )
 Added by Amit Pratap Yadav
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In our recent paper (Yadav et al. 2007) we described a fast cubic (bispectrum) estimator of the amplitude of primordial non-Gaussianity of local type, f_{NL}, from a combined analysis of the Cosmic Microwave Background (CMB) temperature and E-polarization observations. In this paper we generalize the estimator to deal with a partial sky coverage as well as inhomogeneous noise. Our generalized estimator is still computationally efficient, scaling as O(N^3/2) compared to the O(N^5/2) scaling of the brute force bispectrum calculation for sky maps with N pixels. Upcoming CMB experiments are expected to yield high-sensitivity temperature and E-polarization data. Our generalized estimator will allow us to optimally utilize the combined CMB temperature and E-polarization information from these realistic experiments, and to constrain primordial non-Gaussianity.



rate research

Read More

We derive a fast way for measuring primordial non-Gaussianity in a nearly full-sky map of the cosmic microwave background. We find a cubic combination of sky maps combining bispectrum configurations to capture a quadratic term in primordial fluctuations. Our method takes only N^1.5 operations rather than N^2.5 of the bispectrum analysis (1000 times faster for l=512), retaining the same sensitivity. A key component is a map of underlying primordial fluctuations, which can be more sensitive to the primordial non-Gaussianity than a temperature map. We also derive a fast and accurate statistic for measuring non-Gaussian signals from foreground point sources. The statistic is 10^6 times faster than the full bispectrum analysis, and can be used to estimate contamination from the sources. Our algorithm has been successfully applied to the Wilkinson Microwave Anisotropy Probe sky maps by Komatsu et al. (2003).
We compute analytically the small-scale temperature fluctuations of the cosmic microwave background from cosmic (super-)strings and study the dependence on the string intercommuting probability $P$. We develop an analytical model which describes the evolution of a string network and calculate the numbers of string segments and kinks in a horizon volume. Then we derive the probability distribution function (pdf) which takes account of finite angular resolution of observation. The resultant pdf consists of a Gaussian part due to frequent scatterings by long string segments and a non-Gaussian tail due to close encounters with kinks. The dispersion of the Gaussian part is reasonably consistent with that obtained by numerical simulations by Fraisse et al.. On the other hand, the non-Gaussian tail contains two phenomenological parameters which are determined by comparison with the numerical results for P=1. Extrapolating the pdf to the cases with $P<1$, we predict that the non-Gaussian feature is suppressed for small $P$.
The angular power spectrum of the cosmic infrared background (CIB) is a sensitive probe of the local primordial bispectrum. CIB measurements are integrated over a large volume so that the scale dependent bias from the primordial non-Gaussianity leaves a strong signal in the CIB power spectrum. Although galactic dust dominates over the non-Gaussian CIB signal, it is possible to mitigate the dust contamination with enough frequency channels, especially if high frequencies such as the Planck 857 GHz channel are available. We show that, in this case, measurements of the cosmic microwave background from future space missions should be able to probe the local bispectrum shape down to an amplitude |f_nl| < 1.
104 - E. Jeong , G. F. Smoot 2007
We analyze WMAP 3 year data using the one-point distribution functions to probe the non-Gaussianity in the Cosmic Microwave Background (CMB) Anisotropy data. Computer simulations are performed to determine the uncertainties of the results. We report the non-Gaussianity parameter f_NL is constrained to 26<f_NL<82 for Q-band, 12<f_NL<67 for V-band, 7<f_NL<64 for W-band and 23<f_NL<75 for Q+V+W combined data at 95% confidence level (CL).
Phases of the spherical harmonic analysis of full-sky cosmic microwave background (CMB) temperature data contain useful information complementary to the ubiquitous angular power spectrum. In this letter we present a new method of phase analysis on incomplete sky maps. It is based on Fourier phases of equal-latitude pixel rings of the map, which are related to the mean angle of the trigonometric moments from the full-sky phases. They have an advantage for probing regions of interest without tapping polluted Galactic plane area, and can localize non-Gaussian features and departure from statistical isotropy in the CMB.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا