Do you want to publish a course? Click here

Probing Non-Gaussianity In The Cosmic Microwave Background Anisotropies: One Point Distribution Function

102   0   0.0 ( 0 )
 Added by Eunhwa Jeong
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze WMAP 3 year data using the one-point distribution functions to probe the non-Gaussianity in the Cosmic Microwave Background (CMB) Anisotropy data. Computer simulations are performed to determine the uncertainties of the results. We report the non-Gaussianity parameter f_NL is constrained to 26<f_NL<82 for Q-band, 12<f_NL<67 for V-band, 7<f_NL<64 for W-band and 23<f_NL<75 for Q+V+W combined data at 95% confidence level (CL).



rate research

Read More

Many inflation models predict that primordial density perturbations have a nonzero three-point correlation function, or bispectrum in Fourier space. Of the several possibilities for this bispectrum, the most commmon is the local-model bispectrum, which can be described as a spatial modulation of the small-scale (large-wavenumber) power spectrum by long-wavelength density fluctuations. While the local model predicts this spatial modulation to be scale-independent, many variants have some scale-dependence. Here we note that this scale dependence can be probed with measurements of frequency-spectrum distortions in the cosmic microwave background (CMB), in particular highlighting Compton-$y$ distortions. Dissipation of primordial perturbations with wavenumbers $50,{rm Mpc}^{-1} lesssim k lesssim 10^4,{rm Mpc}^{-1}$ give rise to chemical-potential ($mu$) distortions, while those with wavenumbers $1,{rm Mpc}^{-1} lesssim k lesssim 50,{rm Mpc}^{-1}$ give rise to Compton-$y$ distortions. With local-model non-Gaussianity, the distortions induced by this dissipation can be distinguished from those due to other sources via their cross-correlation with the CMB temperature $T$. We show that the relative strengths of the $mu T$ and $yT$ correlations thus probe the scale-dependence of non-Gaussianity and estimate the magnitude of possible signals relative to sensitivities of future experiments. We discuss the complementarity of these measurements with other probes of squeezed-limit non-Gaussianity.
We derive a fast way for measuring primordial non-Gaussianity in a nearly full-sky map of the cosmic microwave background. We find a cubic combination of sky maps combining bispectrum configurations to capture a quadratic term in primordial fluctuations. Our method takes only N^1.5 operations rather than N^2.5 of the bispectrum analysis (1000 times faster for l=512), retaining the same sensitivity. A key component is a map of underlying primordial fluctuations, which can be more sensitive to the primordial non-Gaussianity than a temperature map. We also derive a fast and accurate statistic for measuring non-Gaussian signals from foreground point sources. The statistic is 10^6 times faster than the full bispectrum analysis, and can be used to estimate contamination from the sources. Our algorithm has been successfully applied to the Wilkinson Microwave Anisotropy Probe sky maps by Komatsu et al. (2003).
The angular power spectrum of the cosmic infrared background (CIB) is a sensitive probe of the local primordial bispectrum. CIB measurements are integrated over a large volume so that the scale dependent bias from the primordial non-Gaussianity leaves a strong signal in the CIB power spectrum. Although galactic dust dominates over the non-Gaussian CIB signal, it is possible to mitigate the dust contamination with enough frequency channels, especially if high frequencies such as the Planck 857 GHz channel are available. We show that, in this case, measurements of the cosmic microwave background from future space missions should be able to probe the local bispectrum shape down to an amplitude |f_nl| < 1.
We compute analytically the small-scale temperature fluctuations of the cosmic microwave background from cosmic (super-)strings and study the dependence on the string intercommuting probability $P$. We develop an analytical model which describes the evolution of a string network and calculate the numbers of string segments and kinks in a horizon volume. Then we derive the probability distribution function (pdf) which takes account of finite angular resolution of observation. The resultant pdf consists of a Gaussian part due to frequent scatterings by long string segments and a non-Gaussian tail due to close encounters with kinks. The dispersion of the Gaussian part is reasonably consistent with that obtained by numerical simulations by Fraisse et al.. On the other hand, the non-Gaussian tail contains two phenomenological parameters which are determined by comparison with the numerical results for P=1. Extrapolating the pdf to the cases with $P<1$, we predict that the non-Gaussian feature is suppressed for small $P$.
The standard inflationary model presents a simple scenario within which the homogeneity, isotropy and flatness of the universe appear as natural outcomes and, in addition, fluctuations in the energy density are originated during the inflationary phase. These seminal density fluctuations give rise to fluctuations in the temperature of the Cosmic Microwave Background (CMB) at the decoupling surface. Afterward, the CMB photons propagate almost freely, with slight gravitational interactions with the evolving gravitational field present in the large scale structure (LSS) of the matter distribution and a low scattering rate with free electrons after the universe becomes reionized. These secondary effects slightly change the shape of the intensity and polarization angular power spectra (APS) of the radiation. The APS contain very valuable information on the parameters characterizing the background model of the universe and those parametrising the power spectra of both matter density perturbations and gravitational waves. In the last few years data from sensitive experiments have allowed a good determination of the shape of the APS, providing for the first time a model of the universe very close to spatially flat. In particular the WMAP first year data, together with other CMB data at higher resolution and other cosmological data sets, have made possible to determine the cosmological parameters with a precision of a few percent. The most striking aspect of the derived model of the universe is the unknown nature of most of its energy contents. This and other open problems in cosmology represent exciting challenges for the CMB community. The future ESA Planck mission will undoubtely shed some light on these remaining questions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا