Do you want to publish a course? Click here

Cosmic Infrared Background anisotropies as a window into primordial non-Gaussianity

150   0   0.0 ( 0 )
 Added by Tucci Marco
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The angular power spectrum of the cosmic infrared background (CIB) is a sensitive probe of the local primordial bispectrum. CIB measurements are integrated over a large volume so that the scale dependent bias from the primordial non-Gaussianity leaves a strong signal in the CIB power spectrum. Although galactic dust dominates over the non-Gaussian CIB signal, it is possible to mitigate the dust contamination with enough frequency channels, especially if high frequencies such as the Planck 857 GHz channel are available. We show that, in this case, measurements of the cosmic microwave background from future space missions should be able to probe the local bispectrum shape down to an amplitude |f_nl| < 1.



rate research

Read More

The 21-cm anisotropies from the neutral hydrogen distribution prior to the era of reionization is a sensitive probe of primordial non-Gaussianity. Unlike the case with cosmic microwave background, 21-cm anisotropies provide multi-redshift information with frequency selection and is not damped at arcminute angular scales. We discuss the angular trispectrum of the 21-cm background anisotropies and discuss how the trispectrum signal generated by the primordial non-Gaussianity can be measured with the three-to-one correlator and the corresponding angular power spectrum. We also discuss the separation of primordial non-Gaussian information in the trispectrum with that generated by the subsequent non-linear gravitational evolution of the density field. While with the angular bispectrum of 21-cm anisotropies one can limit the second order corrections to the primordial fluctuations below f_NL< 1, using the trispectrum information we suggest that the third order coupling term, f_2 or g_NL, can be constrained to be arounde 10 with future 21-cm observations over the redshift interval of 50 to 100.
The Stochastic Gravitational Wave Background (SGWB) is expected to be a key observable for Gravitational Wave (GW) interferometry. Its detection will open a new window on early universe cosmology and on the astrophysics of compact objects. Using a Boltzmann approach, we study the angular anisotropies of the GW energy density, which is an important tool to disentangle the different cosmological and astrophysical contributions to the SGWB. Anisotropies in the cosmological background are imprinted both at its production, and by GW propagation through the large-scale scalar and tensor perturbations of the universe. The first contribution is not present in the Cosmic Microwave Background (CMB) radiation (as the universe is not transparent to photons before recombination), causing an order one dependence of the anisotropies on frequency. Moreover, we provide a new method to characterize the cosmological SGWB through its possible deviation from a Gaussian statistics. In particular, the SGWB will become a new probe of the primordial non-Gaussianity of the large-scale cosmological perturbations.
A future detection of the Stochastic Gravitational Wave Background (SGWB) with GW experiments is expected to open a new window on early universe cosmology and on the astrophysics of compact objects. In this paper we study SGWB anisotropies, that can offer new tools to discriminate between different sources of GWs. In particular, the cosmological SGWB inherits its anisotropies both (i) at its production and (ii) during its propagation through our perturbed universe. Concerning (i), we show that it typically leads to anisotropies with order one dependence on frequency. We then compute the effect of (ii) through a Boltzmann approach, including contributions of both large-scale scalar and tensor linearized perturbations. We also compute for the first time the three-point function of the SGWB energy density, which can allow one to extract information on GW non-Gaussianity with interferometers. Finally, we include non-linear effects associated with long wavelength scalar fluctuations, and compute the squeezed limit of the 3-point function for the SGWB density contrast. Such limit satisfies a consistency relation, conceptually similar to what found in the literature for the case of CMB perturbations.
We derive a fast way for measuring primordial non-Gaussianity in a nearly full-sky map of the cosmic microwave background. We find a cubic combination of sky maps combining bispectrum configurations to capture a quadratic term in primordial fluctuations. Our method takes only N^1.5 operations rather than N^2.5 of the bispectrum analysis (1000 times faster for l=512), retaining the same sensitivity. A key component is a map of underlying primordial fluctuations, which can be more sensitive to the primordial non-Gaussianity than a temperature map. We also derive a fast and accurate statistic for measuring non-Gaussian signals from foreground point sources. The statistic is 10^6 times faster than the full bispectrum analysis, and can be used to estimate contamination from the sources. Our algorithm has been successfully applied to the Wilkinson Microwave Anisotropy Probe sky maps by Komatsu et al. (2003).
We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used to forecast the possibility to simultaneously constrain cosmological, CIB and halo occupation distribution (HOD) parameters in the presence of foregrounds. For the analysis we use wavelengths in eight frequency channels between 200 and 900$;mathrm{GHz}$ with survey specifications given by Planck and LiteBird. We explore the sensitivity to the model parameters up to multipoles of $ell =1000$ using auto- and cross-correlations between the different frequency bands. With this setting, cosmological, HOD and CIB parameters can be constrained to a few percent. Galactic dust is modeled by a power law and the shot noise contribution as a frequency dependent amplitude which are marginalized over. We find that dust residuals in the CIB maps only marginally influence constraints on standard cosmological parameters. Furthermore, the bispectrum yields tighter constraints (by a factor four in $1sigma$ errors) on almost all model parameters while the degeneracy directions are very similar to the ones of the power spectrum. The increase in sensitivity is most pronounced for the sum of the neutrino masses. Due to the similarity of degeneracies a combination of both analysis is not needed for most parameters. This, however, might be due to the simplified bias description generally adopted in such halo model approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا