Do you want to publish a course? Click here

String Dynamics, Spontaneous Breaking of Supersymmetry and Dual Scalar Field Theory

200   0   0.0 ( 0 )
 Added by LuXin Liu
 Publication date 2008
  fields
and research's language is English
 Authors Lu-Xin Liu




Ask ChatGPT about the research

The dynamics of a vortex string, which describes the Nambu-Goldtone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal $U(1)_R$ symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string



rate research

Read More

195 - S. P. de Alwis , Z. Lalak 2010
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out, in practice it is hard to get acceptable constructions, since typically, supersymmetry breaking cannot be separated from the stabilization of the light modulus.
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
236 - Taichiro Kugo 2017
The supersymmetric Nambu-Jona-Lasinio model proposed by Cheng, Dai, Faisel and Kong is re-analyzed by using an auxiliary superfield method in which a hidden local U(1) symmetry emerges. It is shown that, in the healthy field-space region where no negative metric particles appear, only SUSY preserving vacua can be realized in the weak coupling regime and a composite massive spin-1 supermultiplets appear as a result of spontaneous breaking of the hidden local U(1) symmetry. In the strong coupling regime, on the other hand, SUSY is dynamically broken, but it is always accompanied by negative metric particles.
Motivated by supersymmetry breaking in matrix model formulations of superstrings, we present some concrete models, in which the supersymmetry is preserved for any finite $N$, but gets broken at infinite $N$, where $N$ is the rank of matrix variables. The models are defined as supersymmetric field theories coupled to some matrix models, and in the induced action obtained after integrating out the matrices, supersymmetry is spontaneously broken only when $N$ is infinity. In our models, the large value of $N$ gives a natural explanation for the origin of small parameters appearing in the field theories which trigger the supersymmetry breaking. In particular, in the case of the ORaifeartaigh model coupled to a certain supersymmetric matrix model, a nonsupersymmetric metastable vacuum appears near the origin of the field space, which is far from the position of the supersymmetric vacuum. We estimate its lifetime as a function of $N$.
We study phase structure of mass-deformed ABJM theory which is a three dimensional $mathcal{N}=6$ superconformal theory deformed by mass parameters and has the gauge group $text{U}(N)times text{U}(N)$ with Chern-Simons levels $(k,-k)$ which may have a gravity dual. We discuss that the mass deformed ABJM theory on $S^3$ breaks supersymmetry in a large-$N$ limit if the mass is larger than a critical value. To see some evidence for this conjecture, we compute the partition function exactly, and numerically by using the Monte Carlo Simulation for small $N$. We discover that the partition function has zeroes as a function of the mass deformation parameters if $Nge k$, which supports the large-$N$ supersymmetry breaking. We also find a solution to the large-$N$ saddle point equations, where the free energy is consistent with the finite $N$ result.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا