Do you want to publish a course? Click here

Spontaneous Supersymmetry Breaking by Large-N Matrices

227   0   0.0 ( 0 )
 Added by Tsunehide Kuroki
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by supersymmetry breaking in matrix model formulations of superstrings, we present some concrete models, in which the supersymmetry is preserved for any finite $N$, but gets broken at infinite $N$, where $N$ is the rank of matrix variables. The models are defined as supersymmetric field theories coupled to some matrix models, and in the induced action obtained after integrating out the matrices, supersymmetry is spontaneously broken only when $N$ is infinity. In our models, the large value of $N$ gives a natural explanation for the origin of small parameters appearing in the field theories which trigger the supersymmetry breaking. In particular, in the case of the ORaifeartaigh model coupled to a certain supersymmetric matrix model, a nonsupersymmetric metastable vacuum appears near the origin of the field space, which is far from the position of the supersymmetric vacuum. We estimate its lifetime as a function of $N$.



rate research

Read More

We construct a class of matrix models, where supersymmetry (SUSY) is spontaneously broken at the matrix size $N$ infinite. The models are obtained by dimensional reduction of matrix-valued SUSY quantum mechanics. The potential of the models is slowly varying, and the large-$N$ limit is taken with the slowly varying limit. First, we explain our formalism, introducing an external field to detect spontaneous SUSY breaking, analogously to ordinary (bosonic) symmetry breaking. It is observed that SUSY is possibly broken even in systems in less than one-dimension, for example, discretized quantum mechanics with a finite number of discretized time steps. Then, we consider spontaneous SUSY breaking in the SUSY matrix models with slowly varying potential, where the external field is turned off after the large-$N$ and slowly varying limit, analogously to the thermodynamic limit in statistical systems. On the other hand, without taking the slowly varying limit, in the SUSY matrix model with a double-well potential whose SUSY is broken due to instantons for finite $N$, a number of supersymmetric behavior is explicitly seen at large $N$. It convinces us that the instanton effect disappears and the SUSY gets restored in the large-$N$ limit.
236 - Taichiro Kugo 2017
The supersymmetric Nambu-Jona-Lasinio model proposed by Cheng, Dai, Faisel and Kong is re-analyzed by using an auxiliary superfield method in which a hidden local U(1) symmetry emerges. It is shown that, in the healthy field-space region where no negative metric particles appear, only SUSY preserving vacua can be realized in the weak coupling regime and a composite massive spin-1 supermultiplets appear as a result of spontaneous breaking of the hidden local U(1) symmetry. In the strong coupling regime, on the other hand, SUSY is dynamically broken, but it is always accompanied by negative metric particles.
We study phase structure of mass-deformed ABJM theory which is a three dimensional $mathcal{N}=6$ superconformal theory deformed by mass parameters and has the gauge group $text{U}(N)times text{U}(N)$ with Chern-Simons levels $(k,-k)$ which may have a gravity dual. We discuss that the mass deformed ABJM theory on $S^3$ breaks supersymmetry in a large-$N$ limit if the mass is larger than a critical value. To see some evidence for this conjecture, we compute the partition function exactly, and numerically by using the Monte Carlo Simulation for small $N$. We discover that the partition function has zeroes as a function of the mass deformation parameters if $Nge k$, which supports the large-$N$ supersymmetry breaking. We also find a solution to the large-$N$ saddle point equations, where the free energy is consistent with the finite $N$ result.
In this contribution, we discuss the possibility of meta-stable supersymmetry (SUSY) breaking vacua in a perturbed Seiberg-Witten theory with Fayet-Iliopoulos (FI) term. We found meta-stable SUSY breaking vacua at the degenerated dyon and monopole singular points in the moduli space at the nonperturbative level.
We show how translational invariance can be broken by the vacuum that drives the spontaneous symmetry breaking of extra-dimensional extensions of the Standard Model, when delta-like interactions between brane and bulk scalar fields are present. We explicitly build some examples of vacuum configurations, which induce the spontaneous symmetry breaking, and have non trivial profile in the extra coordinate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا