Do you want to publish a course? Click here

Stellar Collisions in Young Clusters: Formation of (Very) Massive Stars?

474   0   0.0 ( 0 )
 Added by Marc Freitag
 Publication date 2008
  fields Physics
and research's language is English
 Authors Marc Freitag




Ask ChatGPT about the research

In young star clusters, the density can be high enough and the velocity dispersion low enough for stars to collide and merge with a significant probability. This has been suggested as a possible way to build up the high-mass portion of the stellar mass function and as a mechanism leading to the formation of one or two very massive stars (M > 150 Msun) through a collisional runaway. I quickly review the standard theory of stellar collisions, covering both the stellar dynamics of dense clusters and the hydrodynamics of encounters between stars. The conditions for collisions to take place at a significant rate are relatively well understood for idealised spherical cluster models without initial mass segregation, devoid of gas and composed of main-sequence (MS) stars. In this simplified situation, 2-body relaxation drives core collapse through mass segregation and a collisional phase ensues if the core collapse time is shorter than the MS lifetime of the most massive stars initially present. The outcome of this phase is still highly uncertain. A more realistic situation is that of a cluster still containing large amounts of interstellar gas from which stars are accreting. As stellar masses increase, the central regions of the cluster contracts. This little-explored mechanism can potentially lead to very high stellar densities but it is likely that, except for very rich systems, the contraction is halted by few-body interactions before collisions set in. A complete picture, combining both scenarios, will need to address many uncertainties, including the role of cluster sub-structure, the dynamical effect of interstellar gas, non-MS stars and the structure and evolution of merged stars.



rate research

Read More

The purpose of this research is to study the connection of global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object population. The analysis in based on the combination of spectroscopic parallax-based reddening and distance determinations with main sequence and pre-main sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 Mo), the slope Gamma of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. On the other hand, the young stellar objects in the surrounding clusters fields are classified by low resolution spectra, spectral energy distribution fit with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed young stellar objects (except one) are found to be massive (more than 8 Mo). Using VVV and GLIMPSE color-color cuts we have selected a large number of new young stellar object candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classification on the basis of the light curves.
Using Monte Carlo codes, we follow the collisional evolution of clusters in a variety of scenarios. We consider the conditions under which a cluster of main sequence stars may undergo rapid core collapse due to mass segregation, thus entering a phase of runaway collisions, forming a very massive star (VMS, M >= 1000 Msun) through repeated collisions between single stars. Although collisional mass loss is accounted for realistically, we find that a VMS forms even in proto-galactic nuclei models with a high velocity dispersion (many 100 km/s). Such a VMS may be a progenitor for an intermediate-mass black hole (M >= 100 Msun). In contrast, in galactic nuclei hosting a central massive black hole, collisions are found to be disruptive. The stars which are subject to collisions are progressively ground down by high-velocity collisions and a merger sequence appears impossible.
We present a detailed stellar population analysis of 27 massive elliptical galaxies within 4 very rich clusters at redshift z~0.2: A115, A655, A963 and A2111. Using the new, high-resolution stellar populations models developed in our group, we obtained accurate estimates of the mean luminosity-weighted ages and relative abundances of CN, Mg and Fe. We have found that [CN/H] and [Mg/H] are correlated with sigma while [Fe/H] and Log(age) are not. In addition, both abundance ratios [CN/Fe] and [Mg/Fe] increase with sigma. Furthermore, the [CN/H]-sigma and [CN/Fe]-sigma slopes are steeper for galaxies in very rich clusters than those in the less dense Virgo and Coma clusters. On the other hand, [Mg/H]-sigma and [Mg/Fe]-sigma slopes keep constant as functions of the environment. Our results are compatible with a scenario in which the stellar populations of massive elliptical galaxies, independently of their environment and mass, had formation timescales shorter than ~1 Gyr. This result implies that massive elliptical galaxies have evolved passively since, at least, as long ago as z~2. For a given galaxy mass the duration of star formation is shorter in those galaxies belonging to more dense environments; whereas the mass-metallicity relation appears to be also a function of the cluster properties: the denser the environment is, the steeper are the correlations. Finally, we show that the abundance ratios [CN/Fe] and [Mg/Fe] are the key chemical clocks to infer the star formation history timescales in ellipticals. In particular, [Mg/Fe] provides an upper limit for those formation timescales, while [CN/Fe] apperars to be the most suitable parameter to resolve them in elliptical galaxies with sigma<300 km/s.
Star clusters appear to be the ideal environment for the assembly of neutron star-neutron star (NS-NS) and black hole-neutron star (BH-NS) binaries. These binaries are among the most interesting astrophysical objects, being potential sources of gravitational waves (GWs) and gamma-ray bursts. We use for the first time high-precision N-body simulations of young massive and open clusters to study the origin and dynamical evolution of NSs, within clusters with different initial masses, metallicities, primordial binary fractions, and prescriptions for the compact object natal kicks at birth. We find that the radial profile of NSs is shaped by the BH content of the cluster, which partially quenches the NS segregation due to the BH-burning process. This leaves most of the NSs out of the densest cluster regions, where NS-NS and BH-NS binaries could potentially form. Due to a large velocity kick that they receive at birth, most of the NSs escape the host clusters, with the bulk of their retained population made up of NSs of $sim 1.3$ M$_odot$ coming from the electron-capture supernova process. The details of the primordial binary fraction and pairing can smear out this trend. Finally, we find that a subset of our models produce NS-NS mergers, leading to a rate of $sim 0.01$--$0.1$ Gpc$^{-3}$ yr$^{-1}$ in the local Universe, and compute an upper limit of $sim 3times 10^{-2}$--$3times 10^{-3}$ Gpc$^{-3}$ yr$^{-1}$ for the BH-NS merger rate. Our estimates are several orders of magnitude smaller than the current empirical merger rate from LIGO/Virgo, in agreement with the recent rate estimates for old globular clusters.
AIMS: The aim of this work is to understand whether there is a difference in the dispersion of discs around stars in high-density young stellar clusters like the Orion Nebula Cluster (ONC) according to the mass of the star. METHODS: Two types of simulations were combined -- N-body simulations of the dynamics of the stars in the ONC and mass loss results from simulations of star-disc encounters, where the disc mass loss of all stars is determined as a function of time. RESULTS: We find that in the Trapezium, the discs around high-mass stars are dispersed much more quickly and to a larger degree by their gravitational interaction than for intermediate-mass stars. This is consistent with the very recent observations of IC 348, where a higher disc frequency was found around solar mass stars than for more massive stars, suggesting that this might be a general trend in large young stellar clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا