No Arabic abstract
We present a detailed stellar population analysis of 27 massive elliptical galaxies within 4 very rich clusters at redshift z~0.2: A115, A655, A963 and A2111. Using the new, high-resolution stellar populations models developed in our group, we obtained accurate estimates of the mean luminosity-weighted ages and relative abundances of CN, Mg and Fe. We have found that [CN/H] and [Mg/H] are correlated with sigma while [Fe/H] and Log(age) are not. In addition, both abundance ratios [CN/Fe] and [Mg/Fe] increase with sigma. Furthermore, the [CN/H]-sigma and [CN/Fe]-sigma slopes are steeper for galaxies in very rich clusters than those in the less dense Virgo and Coma clusters. On the other hand, [Mg/H]-sigma and [Mg/Fe]-sigma slopes keep constant as functions of the environment. Our results are compatible with a scenario in which the stellar populations of massive elliptical galaxies, independently of their environment and mass, had formation timescales shorter than ~1 Gyr. This result implies that massive elliptical galaxies have evolved passively since, at least, as long ago as z~2. For a given galaxy mass the duration of star formation is shorter in those galaxies belonging to more dense environments; whereas the mass-metallicity relation appears to be also a function of the cluster properties: the denser the environment is, the steeper are the correlations. Finally, we show that the abundance ratios [CN/Fe] and [Mg/Fe] are the key chemical clocks to infer the star formation history timescales in ellipticals. In particular, [Mg/Fe] provides an upper limit for those formation timescales, while [CN/Fe] apperars to be the most suitable parameter to resolve them in elliptical galaxies with sigma<300 km/s.
Chandras high angular resolution can resolve emission from stellar X-ray binaries out of the diffuse X-ray emission from gaseous atmospheres within elliptical galaxies. Variations in the X-ray binary populations (per unit galaxian optical luminosity) are correlated with variations in the specific frequency of globular clusters in ellipticals. This indicates that X-ray binaries are largely formed in globular clusters, rather than being a primordial field population.
We present high-quality, Keck spectroscopic data for a sample of 20 globular clusters (GCs) in the massive E0 galaxy NGC1407. A subset of twenty line-strength indices of the Lick/IDS system have been measured for both the GC system and the central integrated star-light of the galaxy. Ages, metallicities and [alpha/Fe] ratios have been derived using several different approaches. The majority GCs in NGC1407 studied are old, follow a tight metallicity sequence reaching values slightly above solar, and exhibit mean [alpha/Fe] ratios of ~ 0.3 dex. In addition, three GCs are formally derived to be young (~ 4 Gyr), but we argue that they are actually old GCs hosting blue horizontal branches. We report, for the first time, evidence for the existence of two chemically-distinct subpopulations of metal-rich (MR) GCs. We find some MR GCs exhibit significantly larger [Mg/Fe] and [C/Fe] ratios. Different star formation time-scales are proposed to explain the correlation between Mg and C abundances. We also find striking CN overabundances over the entire GC metallicity range. Interestingly, the behavior of C and N in metal-poor (MP) GCs clearly deviates from the one in MR GCs. In particular, for MR GCs, N increases dramatically while C essentially saturates. This may be interpreted as a consequence of the increasing importance of the CNO cycle with increasing metallicity.
We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49s stellar halo out to ~ 100 kpc (7 Re), where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B-V ~ 0.7); if this is purely a metallicity effect, it argues for extremely metal poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxys surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49s outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49s halo. Thus the extremely metal-poor nature of M49s extended halo provides some tension against current models for elliptical galaxy formation.
We present UBVRI surface photometry for 16 dwarf elliptical galaxies in the Virgo Cluster with previously measured kinematic properties. The global optical colors are red, with median values for the sample of 0.24 +/- 0.03 in (U-B), 0.77 +/- 0.02 in (B-V), and 1.02 +/- 0.03 in (V-I). We recover the well known color-magnitude relation for cluster galaxies, but find no significant difference in dominant stellar population between rotating and non-rotating dwarf elliptical galaxies; the average age of the dominant stellar population is 5-7 Gyr in all 16 galaxies in this sample. Analysis of optical spectra confirm these age estimates and indicate Fe and Mg abundances in the range of 1/20th to 1/3 of solar, as expected for low luminosity galaxies. Based on Lick indices and simple stellar population models, the derived [alpha/Fe] ratios are sub-solar to solar, indicating a more gradual chemical enrichment history for dEs as compared to giant elliptical galaxies in the Virgo Cluster. These observations confirm the marked difference in stellar population and stellar distribution between dwarf and giant elliptical galaxies and further substantiate the need for alternative evolutionary scenarios for the lowest mass cluster galaxies. We argue that it is likely that several different physical mechanisms played a significant role in the production of the Virgo cluster dE galaxies including in situ formation, infall of dEs that were once part of Local Group analogs, and transformation of dwarf irregular galaxies by the cluster environment. The observations support the hypothesis that a large fraction of the Virgo cluster dEs are formed by ram pressure stripping of gas from infalling dIs.
We are using optical/IR surface brightness fluctuations (SBFs) to validate the latest stellar population synthesis models and to understand the stellar populations of ellipticals. Integrated light and spectra measure only the first moment of the stellar luminosity function (Sigma n_i * L_i). Since SBFs also depend on the second moment (Sigma n_i * L_i^2), they provide novel information, in particular about the reddest, most luminous RGB and AGB stars, which are the most difficult stars to model. SBFs can also provide useful new constraints on the age/metallicity of unresolved stellar populations in ellipticals. Finally, developing accurate stellar population models benefits several aspects of SBF distance measurements to galaxies.