Do you want to publish a course? Click here

Estimation of the Repeatedly-Projected Reduced Density Matrix under Decoherence

110   0   0.0 ( 0 )
 Added by Kazuya Yuasa
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Decoherence is believed to deteriorate the ability of a purification scheme that is based on the idea of driving a system to a pure state by repeatedly measuring another system in interaction with the former and hinder for a pure state to be extracted asymptotically. Nevertheless, we find a way out of this difficulty by deriving an analytic expression of the reduced density matrix for a two-qubit system immersed in a bath. It is shown that we can still extract a pure state if the environment brings about only dephasing effects. In addition, for a dissipative environment, there is a possibility of obtaining a dominant pure state when we perform a finite number of measurements.



rate research

Read More

We probe the theoretical connection among three different approaches to analyze the entanglement of identical particles, i.e., the first quantization language (1QL), elementary-symmetric/exterior products (which has the mathematical equivalence to no-labeling approaches), and the algebraic approach based on the GNS construction. Among several methods to quantify the entanglement of identical particles, we focus on the computation of reduced density matrices, which can be achieved by the concept of emph{symmetrized partial trace} defined in 1QL. We show that the symmetrized partial trace corresponds to the interior product in symmetric and exterior algebra (SEA), which also corresponds to the subalgebra restriction in the algebraic approach based on GNS representation. Our research bridges different viewpoints for understanding the quantum correlation of identical particles in a consistent manner.
Based on a generalization of Hohenberg-Kohns theorem, we propose a ground state theory for bosonic quantum systems. Since it involves the one-particle reduced density matrix $gamma$ as a natural variable but still recovers quantum correlations in an exact way it is particularly well-suited for the accurate description of Bose-Einstein condensates. As a proof of principle we study the building block of optical lattices. The solution of the underlying $v$-representability problem is found and its peculiar form identifies the constrained search formalism as the ideal starting point for constructing accurate functional approximations: The exact functionals for this $N$-boson Hubbard dimer and general Bogoliubov-approximated systems are determined. The respective gradient forces are found to diverge in the regime of Bose-Einstein condensation, $ abla_{gamma} mathcal{F} propto 1/sqrt{1-N_{mathrm{BEC}}/N}$, providing a natural explanation for the absence of complete BEC in nature.
In this paper we use the Fano representation of two-qubit states from which we can identify a correlation matrix containing the information about the classical and quantum correlations present in the bipartite quantum state. To illustrate the use of this matrix, we analyze the behavior of the correlations under non-dissipative decoherence in two-qubit states with maximally mixed marginals. From the behavior of the elements of the correlation matrix before and after making measurements on one of the subsystems, we identify the classical and quantum correlations present in the Bell-diagonal states. In addition, we use the correlation matrix to study the phenomenon known as freezing of quantum discord. We find that under some initial conditions where freezing of quantum discord takes place, quantum correlation instead may remain not constant. In order to further explore into these results we also compute a non-commutativity measure of quantum correlations to analyze the behavior of quantum correlations under non-dissipative decoherence. We conclude from our study that freezing of quantum discord may not always be identified as equivalent to the freezing of the actual quantum correlations.
109 - Wen-ge Wang 2020
I study the statistical description of a small quantum system, which is coupled to a large quantum environment in a generic form and with a generic interaction strength, when the total system lies in an equilibrium state described by a microcanonical ensemble. The focus is on the difference between the reduced density matrix (RDM) of the central system in this interacting case and the RDM obtained in the uncoupled case. In the eigenbasis of the central systems Hamiltonian, it is shown that the difference between diagonal elements is mainly confined by the ratio of the maximum width of the eigenfunctions of the total system in the uncoupled basis to the width of the microcanonical energy shell; meanwhile, the difference between off-diagonal elements is given by the ratio of certain property of the interaction Hamiltonian to the related level spacing of the central system. As an application, a sufficient condition is given, under which the RDM may have a canonical Gibbs form under system-environment interactions that are not necessarily weak; this Gibbs state usually includes certain averaged effect of the interaction. For central systems that interact locally with many-body quantum chaotic systems, it is shown that the RDM usually has a Gibbs form. I also study the RDM which is computed from a typical state of the total system within an energy shell.
In [arxiv:2106.02560] we proposed a reduced density matrix functional theory (RDMFT) for calculating energies of selected eigenstates of interacting many-fermion systems. Here, we develop a solid foundation for this so-called $boldsymbol{w}$-RDMFT and present the details of various derivations. First, we explain how a generalization of the Ritz variational principle to ensemble states with fixed weights $boldsymbol{w}$ in combination with the constrained search would lead to a universal functional of the one-particle reduced density matrix. To turn this into a viable functional theory, however, we also need to implement an exact convex relaxation. This general procedure includes Valones pioneering work on ground state RDMFT as the special case $boldsymbol{w}=(1,0,ldots)$. Then, we work out in a comprehensive manner a methodology for deriving a compact description of the functionals domain. This leads to a hierarchy of generalized exclusion principle constraints which we illustrate in great detail. By anticipating their future pivotal role in functional theories and to keep our work self-contained, several required concepts from convex analysis are introduced and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا