Do you want to publish a course? Click here

Magnetic resonance in iron oxide nanoparticles: quantum features and effect of size

216   0   0.0 ( 0 )
 Added by Natalia Noginova
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to better understand the transition from quantum to classical behavior in spin system, electron magnetic resonance (EMR) is studied in suspensions of superparamagnetic magnetite nanoparticles with an average diameter of ~ 9 nm and analyzed in comparison with the results obtained in the maghemite particles of smaller size (~ 5 nm). It is shown that both types of particles demonstrate common EMR behavior, including special features such as the temperature-dependent narrow spectral component and multiple-quantum transitions. These features are common for small quantum systems and not expected in classical case. The relative intensity of these signals rapidly decreases with cooling or increase of particle size, marking gradual transition to the classical FMR behavior.



rate research

Read More

We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.
Films of oxides doped with transition metals are frequently believed to have magnetic inclusions. Magnetic methods to determine the amount of nanophases and their magnetic characteristics are described. The amount of the sample that is paramagnetic may also be measured. Optical methods are described and shown to be very powerful to determine which defects are also magnetic.
205 - N. Noginova , F. Chen , T. Weaver 2006
Magnetic nanoparticles of gamma-Fe2O3 coated by organic molecules and suspended in liquid and solid matrices, as well as a non-diluted magnetic fluid have been studied by electron magnetic resonance (EMR) at 77-380 K. Slightly asymmetric spectra observed at room temperature become much broader, symmetric, and shift to lower fields upon cooling. An additional narrow spectral component (with the line-width of 30 G) is found in the diluted samples, its magnitude obeying the Arrhenius law with the activation temperature of about 850 K. The longitudinal spin-relaxation time, T1 >> 10 ns, was determined by the specially developed modulation method. Angular dependence of the EMR signal position in field-freezing samples unambiguously points to the domination of the uniaxial magnetic anisotropy. Substantial alignment is achieved in moderate freezing fields of 4-5 kG, suggesting formation of dipolar-coupled chains consisting from several particles separated by organic nanolayers. The shift and broadening of the spectrum upon cooling are ascribed to the role of the surface layer, which is considered with taking into acount the strong surface-related anisotropy. To describe the overall spectrum shape, a quantization model is used which includes summation of the resonances corresponding to varios orientations of the particle magnetic moment. This approach, supplemented with some phenomenological assumptions, provides satisfactory agreement with the experimental data.
In this work we studied the influence of particle size and agglomeration in the performance of solid oxide fuel cell cathodes made with nanoparticles of La0.8Sr0.2MnO3. We followed two synthesis routes based on the Liquid Mix method. In both procedures we introduced additional reagents in order to separated the manganite particles. We evaluated cathodic performance by Electrochemical Impedance Spectroscopy in symmetrical (CATHODE/ELECTROLYTE/CATHODE) cells. Particle size was tuned by the temperature used for cathode sintering. Our results show that deagglomeration of the particles, serves to improve the cathodes performance. However, the dependence of the performance with the size of the particles is not clear, as different trends were obtained for each synthesis route. As a common feature, the cathodes with the lowest area specific resistance are the ones sintered at the largest temperature. This result indicates that an additional factor related with the quality of the cathode/electrolyte sintering, is superimposed with the influence of particle size, however further work is needed to clarify this issue. The enhancement obtained by deagglomeration suggest that the use of this kind of methods deserved to be considered to develop high performance electrodes for solid oxide fuel cells.
We report on self-assembled iron oxide nanoparticle films on silicon substrates. In addition to homogeneously assembled layers, we fabricated patterned trenches of 40-1000 nm width using electron beam lithography for the investigation of assisted self-assembly. The nanoparticles with a diameter of 20 nm +/- 7% were synthesized by thermal decomposition of iron oleate complexes in trioctylamine in presence of oleic acid. Samples with different track widths and nanoparticle concentration were characterized by scanning electron microscopy and by superconducting quantum interference device magnetometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا