Do you want to publish a course? Click here

Pressure effects in hollow and solid iron oxide nanoparticles

136   0   0.0 ( 0 )
 Added by Oscar Iglesias
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core.



rate research

Read More

In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (g-Fe2O3) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles are characterized by low superparamagnetic-to-ferromagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of an atomistic Monte Carlo simulation of an individual spherical shell model. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the structure polycrystalline and its hollow geometry, while revealing the magnetic domain arrangement in the different temperature regimes.
In order to better understand the transition from quantum to classical behavior in spin system, electron magnetic resonance (EMR) is studied in suspensions of superparamagnetic magnetite nanoparticles with an average diameter of ~ 9 nm and analyzed in comparison with the results obtained in the maghemite particles of smaller size (~ 5 nm). It is shown that both types of particles demonstrate common EMR behavior, including special features such as the temperature-dependent narrow spectral component and multiple-quantum transitions. These features are common for small quantum systems and not expected in classical case. The relative intensity of these signals rapidly decreases with cooling or increase of particle size, marking gradual transition to the classical FMR behavior.
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.
In this work we studied the influence of particle size and agglomeration in the performance of solid oxide fuel cell cathodes made with nanoparticles of La0.8Sr0.2MnO3. We followed two synthesis routes based on the Liquid Mix method. In both procedures we introduced additional reagents in order to separated the manganite particles. We evaluated cathodic performance by Electrochemical Impedance Spectroscopy in symmetrical (CATHODE/ELECTROLYTE/CATHODE) cells. Particle size was tuned by the temperature used for cathode sintering. Our results show that deagglomeration of the particles, serves to improve the cathodes performance. However, the dependence of the performance with the size of the particles is not clear, as different trends were obtained for each synthesis route. As a common feature, the cathodes with the lowest area specific resistance are the ones sintered at the largest temperature. This result indicates that an additional factor related with the quality of the cathode/electrolyte sintering, is superimposed with the influence of particle size, however further work is needed to clarify this issue. The enhancement obtained by deagglomeration suggest that the use of this kind of methods deserved to be considered to develop high performance electrodes for solid oxide fuel cells.
We report on self-assembled iron oxide nanoparticle films on silicon substrates. In addition to homogeneously assembled layers, we fabricated patterned trenches of 40-1000 nm width using electron beam lithography for the investigation of assisted self-assembly. The nanoparticles with a diameter of 20 nm +/- 7% were synthesized by thermal decomposition of iron oleate complexes in trioctylamine in presence of oleic acid. Samples with different track widths and nanoparticle concentration were characterized by scanning electron microscopy and by superconducting quantum interference device magnetometry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا