We explore the signature of the extra dimension in the Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons. Comparing with the spherical case, we find that the rotating parameter brings richer physics. We obtain the appropriate size of the extra dimension which can enhance the Hawking radiation and may open a window to detect the extra dimensions.
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. By using same manner, we derive both the desired result of the Hawking temperature and the effect of the back reaction associated with the radiation in the squashed Kaluza-Klein black hole background.
We consider the Hawking radiation by the tunneling of charged fermions and charged scalar particles from the five-dimensional charged static squashed Kaluza-Klein black hole based on the generalized uncertainty principle. We derive corrections of the Hawking temperature to general relativity, which are related to the energy of the emitted particle, the size of the extra dimension, the charge of the black hole and the quantum effect predicted by the generalized uncertainty principle. It is shown that the quantum correction may slow down the increase of the Hawking temperature, which may lead to the thermodynamic stable remnant after the evaporation of the squashed Kaluza-Klein black hole.
We study the shadow of a rotating squashed Kaluza-Klein (KK) black hole and the shadow is found to possess distinct properties from those of usual rotating black holes. It is shown that the shadow for a rotating squashed KK black hole is heavily influenced by the specific angular momentum of photon from the fifth dimension. Especially, as the parameters lie in a certain special range, there is no any shadow for a black hole, which does not emerge for the usual black holes. In the case where the black hole shadow exists, the shadow shape is a perfect black disk and its radius decreases with the rotation parameter of the black hole. Moreover, the change of the shadow radius with extra dimension parameter also depends on the rotation parameter of black hole. Finally, with the latest observation data, we estimate the angular radius of the shadow for the supermassive black hole Sgr $A^{*}$ at the centre of the Milky Way galaxy and the supermassive black hole in $M87$.
We investigate the geodetic precession effect of a parallely transported spin-vector along a circular geodesic in the five-dimensional squashed Kaluza-Klein black hole spacetime. Then we derive the higher-dimensional correction of the precession angle to the general relativity. We find that the correction is proportional to the square of (size of extra dimension)/(gravitational radius of central object).
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like five dimensional black hole in the vicinity of horizon and four dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, $SU(2)times U(1)simeq U(2)$, we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives a strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.