Do you want to publish a course? Click here

The Optical Gravitational Lensing Experiment. Period-Luminosity Relations of Variable Red Giant Stars

445   0   0.0 ( 0 )
 Added by Igor Soszynski
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Period-luminosity (PL) relations of variable red giants in the Large (LMC) and Small Magellanic Clouds (SMC) are presented. The PL diagrams are plotted in three planes: logP-K_S, logP-W_{JK}, and logP-W_I. Fourteen PL sequences are distinguishable, and some of them consist of three closely spaced ridges. Each of the sequences is fitted with a linear or quadratic function. The similarities and differences between the PL relations in both galaxies are discussed for four types of red giant variability: OGLE Small Amplitude Red Giants (OSARGs), Miras and Semiregular Variables (SRVs), Long Secondary Periods (LSPs) and ellipsoidal variables. We propose a new method of separating OSARGs from non-variable stars and SRVs. The method employs the position in the reddening-free PL diagrams and the characteristic period ratios of these multiperiodic variables. The PL relations for the LMC OSARG are compared with the calculated relations for RGB models along isochrones of relevant ages and metallicities. We also compare measured periods and amplitudes of the OSARGs with predictions based on the relations valid for less luminous solar-like pulsators. Miras and SRVs seem to follow PL relation of the same slopes in the LMC and SMC, while for LSP and ellipsoidal variables slopes in both galaxies are different. The PL sequences defined by LSP variables and binary systems overlap in the whole range of analyzed wavebands. We put forward new arguments for the binary star scenario as an explanation of the LSP variability and elaborate on it further. The measured pulsation to orbital period ratio implies nearly constant ratio of the star radius to orbital distance, R/A=0.4, as we find. Combined effect of tidal friction and mass loss enhanced by the low-mass companion may explain why such a value is preferred.



rate research

Read More

We combine variability information from the MAssive Compact Halo Objects (MACHO) survey of the Large Magellanic Cloud (LMC) with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxys Evolution (SAGE) survey to create a dataset of ~30 000 variable red sources. We photometrically classify these sources as being on the first ascent of the Red Giant Branch (RGB), or as being in one of three stages along the Asymptotic Giant Branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry (extreme AGB candidates). We present linear period-luminosity relationships for these sources using 8 separate infrared bands (J, H, K, 3.6, 4.5, 5.8, 8.0, and 24 micron) as proxies for the luminosity. We find that the wavelength dependence of the slope of the period-luminosity relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 +/- 0.04 when magnitude is measured in the 3.6 micron band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 +/- 0.05.
The Period--Luminosity relation (PLR) of Mira variable stars is an important tool to determine astronomical distances. The common approach of estimating the PLR is a two-step procedure that first estimates the Mira periods and then runs a linear regression of magnitude on log period. When the light curves are sparse and noisy, the accuracy of period estimation decreases and can suffer from aliasing effects. Some methods improve accuracy by incorporating complex model structures at the expense of significant computational costs. Another drawback of existing methods is that they only provide point estimation without proper estimation of uncertainty. To overcome these challenges, we develop a hierarchical Bayesian model that simultaneously models the quasi-periodic variations for a collection of Mira light curves while estimating their common PLR. By borrowing strengths through the PLR, our method automatically reduces the aliasing effect, improves the accuracy of period estimation, and is capable of characterizing the estimation uncertainty. We develop a scalable stochastic variational inference algorithm for computation that can effectively deal with the multimodal posterior of period. The effectiveness of the proposed method is demonstrated through simulations, and an application to observations of Miras in the Local Group galaxy M33. Without using ad-hoc period correction tricks, our method achieves a distance estimate of M33 that is consistent with published work. Our method also shows superior robustness to downsampling of the light curves.
Recently, machine learning methods presented a viable solution for automated classification of image-based data in various research fields and business applications. Scientists require a fast and reliable solution to be able to handle the always growing enormous amount of data in astronomy. However, so far astronomers have been mainly classifying variable star light curves based on various pre-computed statistics and light curve parameters. In this work we use an image-based Convolutional Neural Network to classify the different types of variable stars. We used images of phase-folded light curves from the OGLE-III survey for training, validating and testing and used OGLE-IV survey as an independent data set for testing. After the training phase, our neural network was able to classify the different types between 80 and 99%, and 77-98% accuracy for OGLE-III and OGLE-IV, respectively.
We present results of the search for Cepheids in the galaxy IC1613 carried out as a sub-project of the OGLE-II microlensing survey. 138 Cepheids were found in the 14.2x14.2 arcmin region in the center of the galaxy. We present light curves, VI photometry and basic data for all these objects, as well as color-magnitude diagram of the observed field. The Period--Luminosity (PL) diagrams for IC1613 fundamental mode Cepheids for VI and interstellar extinction insensitive index W_I are constructed. Comparison of PL relations in metal poor galaxy IC1613 ([Fe/H]~-1.0 dex) with relations in metal richer Magellanic Clouds allows us to study dependence of Cepheid PL relations on metallicity in the wide range of metallicities covered by these three galaxies. The slopes of PL relations in IC1613 are identical as in the Magellanic Clouds. The comparison of brightness of Cepheids with the magnitudes of the tip of the red giant branch stars and RR Lyr stars in all three objects provides information on the stability of zero points of PL relations in the I and V-band, respectively. We find that the zero points of PL relations are constant to better than $pm0.03$ mag over the entire range of covered metallicities. Thus, the most important conclusion of the paper is that the Cepheid PL relations do not depend on metallicity. Additionally we determine the mean distance to IC1613, based on the common distance scale resulting from four major stellar distance indicators: Cepheids, RR Lyr, TRGB and red clump stars. The distance modulus to IC1613 is equal to (m-M)_IC1613=24.20 mag with the standard deviation of +/-0.02 mag from six measurements and systematic uncertainty of calibrations of +/-0.07 mag.
79 - Yi Ren 2019
Based on previously selected preliminary samples of Red Supergiants (RSGs) in M33 and M31, the foreground stars and luminous Asymptotic Giant Branch stars (AGBs) are further excluded, which leads to the samples of 717 RSGs in M33 and 420 RSGs in M31. With the time-series data from the iPTF survey spanning nearly 2000 days, the period and amplitude of RSGs are analyzed. According to the lightcurves characteristics, they are classified into four categories in which 84 and 56 objects in M33 and M31 respectively are semi-regular variables. For these semi-regular variables, the pulsation mode is identified by comparing with the theoretical model, which yielded 19 (7) sources in the first overtone mode in M33 (M31), and the other 65 (49) RSGs in M33 (M31) in the fundamental mode. The period-luminosity (P-L) relation is analyzed for the RSGs in the fundamental mode. It is found the P-L relation is tight in the infrared, i.e. the 2MASS $JHK_{rm S}$ bands and the short-wavelength bands of Spitzer. Meanwhile, the inhomogeneous extinction causes the P-L relation scattering in the $V$ band, and the dust emission causes the less tight P-L relation in the Spitzer/[8.0] and [24] bands. The derived P-L relations in the 2MASS/$K_{rm S}$ band are in agreement with those of RSGs in SMC, LMC and the Milky Way within the uncertainty range. It is found that the number ratio of RSGs pulsating in the fundamental mode to the first overtone mode increases with metallicity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا