Do you want to publish a course? Click here

Particle identification with the AMS-02 RICH detector: search for dark matter with antideuterons

136   0   0.0 ( 0 )
 Added by Rui Pereira
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the art particle identification techniques. It is equipped with several subsystems, one of which is a proximity focusing Ring Imaging Cherenkov (RICH) detector equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light guides, enabling precise measurements of particle electric charge and velocity (Delta beta / beta ~ 10^-3 and 10^-4 for Z=1 and Z=10-20, respectively) at kinetic energies of a few GeV/nucleon. Combining velocity measurements with data on particle rigidity from the AMS-02 Tracker (Delta R / R ~ 2% for R=1-10 GV) it is possible to obtain a reliable measurement for particle mass. One of the main topics of the AMS-02 physics program is the search for indirect signatures of dark matter. Experimental data indicate that dark, non-baryonic matter of unknown composition is much more abundant than baryonic matter, accounting for a large fraction of the energy content of the Universe. Apart from antideuterons produced in cosmic-ray propagation, the annihilation of dark matter will produce additional antideuteron fluxes. Detailed Monte Carlo simulations of AMS-02 have been used to evaluate the detectors performance for mass separation, a key issue for anti-D/anti-p separation. Results of these studies are presented.



rate research

Read More

143 - S. Di Falco 2006
The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station, will provide data on cosmic radiations in the energy range from 0.5 GeV to 3 TeV. The main physics goals are the anti-matter and the dark matter searches. Observations and cosmology indicate that the Universe may include a large amount of unknown Dark Matter. It should be composed of non baryonic Weakly Interacting Massive Particles (WIMP). In R-parity conserving models a good WIMP candidate is the lightest SUSY particle. AMS offers a unique opportunity to study simultaneously SUSY dark matter in three decay channels resulting from the neutralino annihilation: e+, antiproton and gamma. Either in the SUSY frame and in alternative scenarios (like extra-dimensions) the expected flux sensitivities as a function of energy in 3 year exposure for the e+/e- ratio, gamma and antiproton yields are presented.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the art particle identification techniques. Among several detector subsystems, AMS includes a proximity focusing RICH enabling precise measurements of particle electric charge and velocity. The combination of both these measurements together with the particle rigidity measured on the silicon tracker endows a reliable measurement of the particle mass. The main topics of the AMS-02 physics program include detailed measurements of the nuclear component of the cosmic-ray spectrum and the search for indirect signatures of dark matter. Mass separation of singly charged particles, and in particular the separation of deuterons and antideuterons from massive backgrounds of protons and antiprotons respectively, is essential in this context. Detailed Monte Carlo simulations of AMS-02 have been used to evaluate the detectors performance for mass separation at different energies. The obtained results and physics prospects are presented.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV. It is equipped with several subsystems, one of which is a proximity focusing RICH detector with a dual radiator (aerogel+NaF) that provides reliable measurements for particle velocity and charge. The assembly and testing of the AMS RICH is currently being finished and the full AMS detector is expected to be ready by the end of 2008. The RICH detector of AMS-02 is presented. Physics prospects are briefly discussed.
For explaining the AMS-02 cosmic positron excess, which was recently reported, we consider a scenario of thermally produced and decaying dark matter (DM) into the standard model (SM) leptons with an extremely small decay rate, Gamma_{DM} sim 10^{-26} sec.^{-1}. Since the needed DM mass is relatively heavy (700 GeV < m_{DM} < 3000 GeV), we introduce another DM component apart from the lightest supersymmetric particle (LSP). For its (meta-) stability and annihilation into other particles, the new DM should be accompanied with another Z_2 symmetry apart from the R-parity. Sizable renormalizable couplings of the new DM with SM particles, which are necessary for its thermalization in the early universe, cannot destabilize the new DM because of the new Z_2 symmetry. Since the new DM was thermally produced, it can naturally explain the present energy density of the universe. The new DM can decay into the SM leptons (and the LSP) only through non-renormalizable operators suppressed by a superheavy squared mass parameter after the new symmetry is broken around TeV scale. We realize this scenario in a model of gauged vector-like leptons, which was proposed recently for the naturalness of the Higgs boson.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the-art particle identification techniques. Following the successful flight of the detector prototype (AMS-01) aboard the space shuttle, AMS-02 is expected to provide a significant improvement on the current knowledge of the elemental and isotopic composition of hadronic cosmic rays due to its long exposure time (minimum of 3 years) and large acceptance (0.5 m^2 sr) which will enable it to collect a total statistics of more than 10^10 nuclei. Detector capabilities for charge, velocity and mass identification, estimated from ion beam tests and detailed Monte Carlo simulations, are presented. Relevant issues in cosmic ray astrophysics addressed by AMS-02, including the test of cosmic ray propagation models, galactic confinement times and the influence of solar cycles on the local cosmic ray flux, are briefly discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا