No Arabic abstract
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the art particle identification techniques. Among several detector subsystems, AMS includes a proximity focusing RICH enabling precise measurements of particle electric charge and velocity. The combination of both these measurements together with the particle rigidity measured on the silicon tracker endows a reliable measurement of the particle mass. The main topics of the AMS-02 physics program include detailed measurements of the nuclear component of the cosmic-ray spectrum and the search for indirect signatures of dark matter. Mass separation of singly charged particles, and in particular the separation of deuterons and antideuterons from massive backgrounds of protons and antiprotons respectively, is essential in this context. Detailed Monte Carlo simulations of AMS-02 have been used to evaluate the detectors performance for mass separation at different energies. The obtained results and physics prospects are presented.
The Alpha Magnetic Spectrometer (AMS), whose final version AMS-02 is to be installed on the International Space Station (ISS) for at least 3 years, is a detector designed to measure charged cosmic ray spectra with energies up to the TeV region and with high energy photon detection capability up to a few hundred GeV, using state-of-the art particle identification techniques. It is equipped with several subsystems, one of which is a proximity focusing Ring Imaging Cherenkov (RICH) detector equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light guides, enabling precise measurements of particle electric charge and velocity (Delta beta / beta ~ 10^-3 and 10^-4 for Z=1 and Z=10-20, respectively) at kinetic energies of a few GeV/nucleon. Combining velocity measurements with data on particle rigidity from the AMS-02 Tracker (Delta R / R ~ 2% for R=1-10 GV) it is possible to obtain a reliable measurement for particle mass. One of the main topics of the AMS-02 physics program is the search for indirect signatures of dark matter. Experimental data indicate that dark, non-baryonic matter of unknown composition is much more abundant than baryonic matter, accounting for a large fraction of the energy content of the Universe. Apart from antideuterons produced in cosmic-ray propagation, the annihilation of dark matter will produce additional antideuteron fluxes. Detailed Monte Carlo simulations of AMS-02 have been used to evaluate the detectors performance for mass separation, a key issue for anti-D/anti-p separation. Results of these studies are presented.
We discuss the origin of the anti-helium-3 and -4 events possibly detected by AMS-02. Using up-to-date semi-analytical tools, we show that spallation from primary hydrogen and helium nuclei onto the ISM predicts a $overline{{}^3{rm He}}$ flux typically one to two orders of magnitude below the sensitivity of AMS-02 after 5 years, and a $overline{{}^4{rm He}}$ flux roughly 5 orders of magnitude below the AMS-02 sensitivity. We argue that dark matter annihilations face similar difficulties in explaining this event. We then entertain the possibility that these events originate from anti-matter-dominated regions in the form of anti-clouds or anti-stars. In the case of anti-clouds, we show how the isotopic ratio of anti-helium nuclei might suggest that BBN has happened in an inhomogeneous manner, resulting in anti-regions with a anti-baryon-to-photon ratio $bar{eta}simeq10^{-3}eta$. We discuss properties of these regions, as well as relevant constraints on the presence of anti-clouds in our Galaxy. We present constraints from the survival of anti-clouds in the Milky-Way and in the early Universe, as well as from CMB, gamma-ray and cosmic-ray observations. In particular, these require the anti-clouds to be almost free of normal matter. We also discuss an alternative where anti-domains are dominated by surviving anti-stars. We suggest that part of the unindentified sources in the 3FGL catalog can originate from anti-clouds or anti-stars. AMS-02 and GAPS data could further probe this scenario.
Indirect searches can be used to test dark matter models against expected signals in various channels, in particular antiprotons. With antiproton data available soon at higher and higher energies, it is important to test the dark matter hypothesis against alternative astrophysical sources, e.g. secondaries accelerated in supernova remnants. We investigate the two signals from different dark models and different supernova remnant parameters, as forecasted for the AMS-02, and show that they present a significant degeneracy.
The decay amplitudes for anti-B0 -> Ds+ Ds- and anti-Bs0 -> D+ D- have no factorizable contributions. We suggest that dominant contributions to the decay amplitudes arise from two chiral loop contributions and one soft gluon emission contribution. Then we determine branching ratios BR(anti-B0 -> Ds+ Ds-) ~ 7E-5 and BR(anti-Bs0 -> D+ D-) ~ 1E-3.
The Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station (ISS) in 2008, is a cosmic ray detector with several subsystems, one of which is a proximity focusing Ring Imaging Cherenkov (RICH) detector. This detector will be equipped with a dual radiator (aerogel+NaF), a lateral conical mirror and a detection plane made of 680 photomultipliers and light guides, enabling precise measurements of particle electric charge and velocity. Combining velocity measurements with data on particle rigidity from the AMS Tracker it is possible to obtain a measurement for particle mass, allowing the separation of isotopes. A Monte Carlo simulation of the RICH detector, based on realistic properties measured at ion beam tests, was performed to evaluate isotope separation capabilities. Results for three elements -- H (Z=1), He (Z=2) and Be (Z=4) -- are presented.