No Arabic abstract
State of the art nanomechanical resonators present quality factors Q ~ 10^3 - 10^5, which are much lower than those that can be naively extrapolated from the behavior of micromechanical resonators. We analyze the dissipation mechanism that arises in nanomechanical beam-structures due to the tunneling of mesoscopic phonons between the beam and its supports (known as clamping losses). We derive the environmental force spectral density that determines the quantum Brownian motion of a given resonance. Our treatment is valid for low frequencies and provides the leading contribution in the aspect ratio. This yields fundamental limits for the Q-values which are described by simple scaling laws and are relevant for state of the art experimental structures. In this context, for resonant frequencies in the 0.1-1GHz range, while this dissipation mechanism can limit flexural resonators it is found to be negligible for torsional ones. In the case of structureless 3D supports the corresponding environmental spectral densities are Ohmic for flexural resonators and super-Ohmic for torsional ones, while for 2D slab supports they yield 1/f noise. Furthermore analogous results are established for the case of suspended semiconducting single-walled carbon nanotubes. Finally, we provide a general expression for the spectral density that allows to extend our treatment to other geometries and illustrate its use by applying it to a microtoroid. Our analysis is relevant for applications in high precision measurements and for the prospects of probing quantum effects in a macroscopic mechanical degree of freedom.
We present measurements of the dissipation and frequency shift in nanomechanical gold resonators at temperatures down to 10 mK. The resonators were fabricated as doubly-clamped beams above a GaAs substrate and actuated magnetomotively. Measurements on beams with frequencies 7.95 MHz and 3.87 MHz revealed that from 30 mK to 500 mK the dissipation increases with temperature as $T^{0.5}$, with saturation occurring at higher temperatures. The relative frequency shift of the resonators increases logarithmically with temperature up to at least 400 mK. Similarities with the behavior of bulk amorphous solids suggest that the dissipation in our resonators is dominated by two-level systems.
We propose and experimentally demonstrate a technique for coupling phonons out of an optomechanical crystal cavity. By designing a perturbation that breaks a symmetry in the elastic structure, we selectively induce phonon leakage without affecting the optical properties. It is shown experimentally via cryogenic measurements that the proposed cavity perturbation causes loss of phonons into mechanical waves on the surface of silicon, while leaving photon lifetimes unaffected. This demonstrates that phonon leakage can be engineered in on-chip optomechanical systems. We experimentally observe large fluctuations in leakage rates that we attribute to fabrication disorder and verify this using simulations. Our technique opens the way to engineering more complex on-chip phonon networks utilizing guided mechanical waves to connect quantum systems.
In strained mechanical resonators, the concurrence of tensile stress and geometric nonlinearity dramatically reduces dissipation. This phenomenon, dissipation dilution, is employed in mirror suspensions of gravitational wave interferometers and at the nanoscale, where soft-clamping and strain engineering have allowed extremely high quality factors. However, these techniques have so far only been applied in amorphous materials, specifically silicon nitride. Crystalline materials exhibit significantly lower intrinsic damping at cryogenic temperatures, due to the absence of two level systems in the bulk, as exploited in Weber bars and silicon optomechanical cavities. Applying dissipation dilution engineering to strained crystalline materials could therefore enable extremely low loss nanomechanical resonators, due to the combination of reduced internal friction, high intrinsic strain, and high yield strength. Pioneering work has not yet fully exploited this potential. Here, we demonstrate that single crystal strained silicon, a material developed for high mobility transistors, can be used to realize mechanical resonators with ultralow dissipation. We observe that high aspect ratio ($>10^5$) strained silicon nanostrings support MHz mechanical modes with quality factors exceeding $10^{10}$ at 7 K, a tenfold improvement over values reported in silicon nitride. At 7 K, the thermal noise-limited force sensitivity is approximately $45 mathrm{{zN}/{sqrt{Hz}}}$ - approaching that of carbon nanotubes - and the heating rate is only 60 quanta-per-second. Our nanomechanical resonators exhibit lower dissipation than the most pristine macroscopic oscillators and their low mass makes them particularly promising for quantum sensing and transduction.
Spin-mechanics studies interactions between spin systems and mechanical vibrations in a nanomechanical resonator and explores their potential applications in quantum information processing. In this tutorial, we summarize various types of spin-mechanical resonators and discuss both the cavity-QED-like and the trapped-ion-like spin-mechanical coupling processes. The implementation of these processes using negatively charged nitrogen vacancy and silicon vacancy centers in diamond is reviewed. Prospects for reaching the full quantum regime of spin-mechanics, in which quantum control can occur at the level of both single spin and single phonon, are discussed with an emphasis on the crucial role of strain coupling to the orbital degrees of freedom of the defect centers.
The energy dissipation 1/Q (where Q is the quality factor) and resonance frequency characteristics of single-crystal 3C-SiC ultrahigh frequency (UHF) nanomechanical resonators are measured, for a family of UHF resonators with resonance frequencies of 295MHz, 395MHz, 411MHz, 420MHz, 428MHz, and 482MHz. A temperature dependence of dissipation, 1/Q ~ T^(0.3) has been identified in these 3C-SiC devices. Possible mechanisms that contribute to dissipation in typical doubly-clamped beam UHF resonators are analyzed. Device size and dimensional effects on the dissipation are also examined. Clamping losses are found to be particularly important in these UHF resonators. The resonance frequency decreases as the temperature is increased, and the average frequency temperature coefficient is about -45ppm/K.