No Arabic abstract
Spin-mechanics studies interactions between spin systems and mechanical vibrations in a nanomechanical resonator and explores their potential applications in quantum information processing. In this tutorial, we summarize various types of spin-mechanical resonators and discuss both the cavity-QED-like and the trapped-ion-like spin-mechanical coupling processes. The implementation of these processes using negatively charged nitrogen vacancy and silicon vacancy centers in diamond is reviewed. Prospects for reaching the full quantum regime of spin-mechanics, in which quantum control can occur at the level of both single spin and single phonon, are discussed with an emphasis on the crucial role of strain coupling to the orbital degrees of freedom of the defect centers.
State of the art nanomechanical resonators present quality factors Q ~ 10^3 - 10^5, which are much lower than those that can be naively extrapolated from the behavior of micromechanical resonators. We analyze the dissipation mechanism that arises in nanomechanical beam-structures due to the tunneling of mesoscopic phonons between the beam and its supports (known as clamping losses). We derive the environmental force spectral density that determines the quantum Brownian motion of a given resonance. Our treatment is valid for low frequencies and provides the leading contribution in the aspect ratio. This yields fundamental limits for the Q-values which are described by simple scaling laws and are relevant for state of the art experimental structures. In this context, for resonant frequencies in the 0.1-1GHz range, while this dissipation mechanism can limit flexural resonators it is found to be negligible for torsional ones. In the case of structureless 3D supports the corresponding environmental spectral densities are Ohmic for flexural resonators and super-Ohmic for torsional ones, while for 2D slab supports they yield 1/f noise. Furthermore analogous results are established for the case of suspended semiconducting single-walled carbon nanotubes. Finally, we provide a general expression for the spectral density that allows to extend our treatment to other geometries and illustrate its use by applying it to a microtoroid. Our analysis is relevant for applications in high precision measurements and for the prospects of probing quantum effects in a macroscopic mechanical degree of freedom.
We investigate nonlinear dispersive mode coupling between the flexural in- and out-of-plane modes of two doubly clamped, nanomechanical silicon nitride string resonators. As the amplitude of one mode transitions from the linear response regime into the nonlinear regime, we find a frequency shift of two other modes. The resonators are strongly elastically coupled via a shared clamping point and can be tuned in and out of resonance dielectrically, giving rise to multimode avoided crossings. When the modes start hybridizing, their polarization changes. This affects the nonlinear dispersive coupling in a non-trivial way. We propose a theoretical model to describe the dependence of the dispersive coupling on the mode hybridization.
An experimental demonstration of a non-classical state of a nanomechanical resonator is still an outstanding task. In this paper we show how the resonator can be cooled and driven into a squeezed state by a bichromatic microwave coupling to a charge qubit. The stationary oscillator state exhibits a reduced noise in one of the quadrature components by a factor of 0.5 - 0.2. These values are obtained for a 100 MHz resonator with a Q-value of 10$^4$ to 10$^5$ and for support temperatures of T $approx$ 25 mK. We show that the coupling to the charge qubit can also be used to detect the squeezed state via measurements of the excited state population. Furthermore, by extending this measurement procedure a complete quantum state tomography of the resonator state can be performed. This provides a universal tool to detect a large variety of different states and to prove the quantum nature of a nanomechanical oscillator.
We propose a current correlation spectrum approach to probe the quantum behaviors of a nanome-chanical resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer and is further coupled to a quantum-point contact (QPC). By measuring the current correlation spectrum of the QPC, shifts in the DQD energy levels, which depend on the phonon occupation in the NAMR, are determined. Quantum behaviors of the NAMR could, thus, be observed. In particular, the cooling of the NAMR into the quantum regime could be examined. In addition, the effects of the coupling strength between the DQD and the NAMR on these energy shifts are studied. We also investigate the impacts on the current correlation spectrum of the QPC due to the backaction from the charge detector on the DQD.
We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibration of a nanomechanical resonator made by semiconductor materials. We show that the spin-orbit interactions of electrons can induce a coherent coupling between the electron spins and the torsional modes of nanomechanical vibration. This coherent coupling leads to an active cooling for the torsional modes via the dynamical thermalization of the resonator and the spin ensemble.