Do you want to publish a course? Click here

Substrate-induced band gap opening in epitaxial graphene

166   0   0.0 ( 0 )
 Added by Shuyun Zhou
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of an energy gap in the electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphenes electronic spectra, they all require complex engineering of the graphene layer. Here we show that when graphene is epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe our results highlight a promising direction for band gap engineering of graphene.



rate research

Read More

The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just energy) of strained graphene by an accurate off-lattice Quantum Monte Carlo (QMC) correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene (SEM) at low strain, multi-determinant Heitler-London correlations stabilize between $simeq$8.5% and $simeq$15% strain an insulating Kekule-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state, the DIM state prevails over the competing antiferromagnetic insulating (AFI) state favored by density-functional calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain conditions 1D metallic interface states lying in the bulk energy gap.
Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena - critical to both many-body physics exploration and device applications - presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in 2D semiconductors.
Graphene has attracted increasing interests due to its remarkable properties, however, the zero band gap of monolayer graphene might limit its further electronic and optoelectronic applications. Herein, we have successfully synthesized monolayer silicon-doped graphene (SiG) in large area by chemical vapor deposition method. Raman spectroscopy and X-ray photoelectron spectroscopy measurements evidence silicon atoms are doped into graphene lattice with the doping level of 3.4 at%. The electrical measurement based on field effect transistor indicates that the band gap of graphene has been opened by silicon doping, which is around 0. 28 eV supported by the first-principle calculations, and the ultraviolet photoelectron spectroscopy demonstrates the work function of SiG is 0.13 eV larger than that of graphene. Moreover, the SiG/GaAs heterostructure solar cells show an improved power conversion efficiency of 33.7% in average than that of graphene/GaAs solar cells, which are attributed to the increased barrier height and improved interface quality. Our results suggest silicon doping can effectively engineer the band gap of monolayer graphene and SiG has great potential in optoelectronic device applications.
The origin of strain-induced ferromagnetism, which is robust regardless of the type and degree of strain in LaCoO3 (LCO) thin films, is enigmatic despite intensive research efforts over the past decade. Here, by combining scanning transmission electron microscopy with ab initio density functional theory plus U calculations, we report that the ferromagnetism does not emerge directly from the strain itself, but rather from the creation of compressed structural units within ferroelastically formed twin-wall domains. The compressed structural units are magnetically active with the rocksalt-type high-spin/low-spin order. Our study highlights that the ferroelastic nature of ferromagnetic structural units is important for understanding the intriguing ferromagnetic properties in LCO thin films.
By using first principles calculations we report a chemical doping induced gap in graphene. The structural and electronic properties of CrO$_3$ interacting with graphene layer are calculated using ab initio methods based on the density functional theory. The CrO$_3$ acts as an electron acceptor modifying the original electronic and magnetic properties of the graphene surface through a chemical adsorption. The changes induced in the electronic properties are strongly dependent of the CrO$_3$ adsorption site and for some sites it is possible to open a gap in the electronic band structure. Spin polarization effects are also predicted for some adsorption configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا