Do you want to publish a course? Click here

Correlation-Driven Dimerization and Topological Gap Opening in Isotropically Strained Graphene

95   0   0.0 ( 0 )
 Added by Tomonori Shirakawa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just energy) of strained graphene by an accurate off-lattice Quantum Monte Carlo (QMC) correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene (SEM) at low strain, multi-determinant Heitler-London correlations stabilize between $simeq$8.5% and $simeq$15% strain an insulating Kekule-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state, the DIM state prevails over the competing antiferromagnetic insulating (AFI) state favored by density-functional calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain conditions 1D metallic interface states lying in the bulk energy gap.



rate research

Read More

Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of an energy gap in the electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphenes electronic spectra, they all require complex engineering of the graphene layer. Here we show that when graphene is epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe our results highlight a promising direction for band gap engineering of graphene.
The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal-line fermions. In this material family, the LnSbTe (Ln= lanthanide) compounds are particularly interesting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal-line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electronic structure we show that the band topology in the bilayer, at twisting angles above 1.05$^circ$, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature of a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or mid-infrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
99 - Yin Shi , Long-Qing Chen 2018
Electric current has been experimentally demonstrated to be able to drive the insulator-to-metal transition (IMT) in VO$_2$. The main mechanisms involved are believed to be the Joule heating effect and the strong electron-correlation effect. These effects are often entangled with each other in experiments, which complicates the understanding of the essential nature of the observations. We formulate a phase-field model to investigate theoretically in mesoscale the pure correlation effect brought by the current on the IMT in VO$_2$, i.e., the isothermal process under the current. We find that a current with a large density ($sim 10^1$ nA/nm$^2$) induces a few-nanosecond ultrafast switch in VO$_2$, in agreement with the experiment. The temperature-current phase diagram is further calculated, which reveals that the current may induce the M2 phase at low temperatures. The current is also shown capable of driving domain walls to move. Our work may assist related experiments and provide guidance to the engineering of VO$_2$-based electric switching devices.
In this work, we investigate the adsorption of a single cobalt atom (Co) on graphene by means of the complete active space self-consistent field approach, additionally corrected by the second-order perturbation theory. The local structure of graphene is modeled by a planar hydrocarbon cluster (C$_{24}$H$_{12}$). Systematic treatment of the electron correlations and the possibility to study excited states allow us to reproduce the potential energy curves for different electronic configurations of Co. We find that upon approaching the surface, the ground-state configuration of Co undergoes several transitions, giving rise to two stable states. The first corresponds to the physisorption of the adatom in the high-spin $3d^74s^2$ ($S=3/2$) configuration, while the second results from the chemical bonding formed by strong orbital hybridization, leading to the low-spin $3d^9$ ($S=1/2$) state. Due to the instability of the $3d^9$ configuration, the adsorption energy of Co is small in both cases and does not exceed 0.35 eV. We analyze the obtained results in terms of a simple model Hamiltonian that involves Coulomb repulsion ($U$) and exchange coupling ($J$) parameters for the 3$d$ shell of Co, which we estimate from first-principles calculations. We show that while the exchange interaction remains constant upon adsorption ($simeq1.1$ eV), the Coulomb repulsion significantly reduces for decreasing distances (from 5.3 to 2.6$pm$0.2 eV). The screening of $U$ favors higher occupations of the 3$d$ shell and thus is largely responsible for the interconfigurational transitions of Co. Finally, we discuss the limitations of the approaches that are based on density functional theory with respect to transition metal atoms on graphene, and we conclude that a proper account of the electron correlations is crucial for the description of adsorption in such systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا