Do you want to publish a course? Click here

Strain-induced atomic-scale building blocks for ferromagnetism in epitaxial LaCoO3

99   0   0.0 ( 0 )
 Added by Sangmoon Yoon
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of strain-induced ferromagnetism, which is robust regardless of the type and degree of strain in LaCoO3 (LCO) thin films, is enigmatic despite intensive research efforts over the past decade. Here, by combining scanning transmission electron microscopy with ab initio density functional theory plus U calculations, we report that the ferromagnetism does not emerge directly from the strain itself, but rather from the creation of compressed structural units within ferroelastically formed twin-wall domains. The compressed structural units are magnetically active with the rocksalt-type high-spin/low-spin order. Our study highlights that the ferroelastic nature of ferromagnetic structural units is important for understanding the intriguing ferromagnetic properties in LCO thin films.



rate research

Read More

Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of an energy gap in the electronic spectra. This, for example, prevents the use of graphene in making transistors. Although several proposals have been made to open a gap in graphenes electronic spectra, they all require complex engineering of the graphene layer. Here we show that when graphene is epitaxially grown on the SiC substrate, a gap of ~ 0.26 is produced. This gap decreases as the sample thickness increases and eventually approaches zero when the number of layers exceeds four. We propose that the origin of this gap is the breaking of sublattice symmetry owing to the graphene-substrate interaction. We believe our results highlight a promising direction for band gap engineering of graphene.
Epitaxial strain imposed in complex oxide thin films by heteroepitaxy is recognized as a powerful tool for identifying new properties and exploring the vast potential of materials performance. A particular example is LaCoO3, a zero spin, nonmagnetic material in the bulk, whose strong ferromagnetism in a thin film remains enigmatic despite a decade of intense research. Here, we use scanning transmission electron microscopy complemented by X-ray and optical spectroscopy to study LaCoO3 epitaxial thin films under different strain states. We observed an unconventional strain relaxation behavior resulting in stripe-like, lattice modulated patterns, which did not involve uncontrolled misfit dislocations or other defects. The modulation entails the formation of ferromagnetically ordered sheets comprising intermediate or high spin Co3+, thus offering an unambiguous description for the exotic magnetism found in epitaxially strained LaCoO3 films. This observation provides a novel route to tailoring the electronic and magnetic properties of functional oxide heterostructures.
The septuple-atomic-layer $mathrm{VSi_2P_4}$ with the same structure of experimentally synthesized $mathrm{MoSi_2N_4}$ is predicted to be a spin-gapless semiconductor (SGS). In this work, the biaxial strain is applied to tune electronic properties of $mathrm{VSi_2P_4}$, and it spans a wide range of properties upon the increasing strain from ferromagnetic metal (FMM) to SGS to ferromagnetic semiconductor (FMS) to SGS to ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS $mathrm{VSi_2P_4}$ with strain range of 0% to 4%. The calculated piezoelectric strain coefficients $d_{11}$ for 1%, 2% and 3% strains are 4.61 pm/V, 4.94 pm/V and 5.27 pm/V, respectively, which are greater than or close to a typical value of 5 pm/V for bulk piezoelectric materials. Finally, similar to $mathrm{VSi_2P_4}$, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the $mathrm{VSi_2N_4}$ monolayer. Our works show that $mathrm{VSi_2P_4}$ in FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.
Charge density waves are ubiquitous phenomena in metallic transition metal dichalcogenides. In NbSe$_2$, a triangular $3times3$ structural modulation is coupled to a charge modulation. Recent experiments reported evidence for a triangular-stripe transition at the surface, due to strain or accidental doping and associated to a $4times4$ modulation. We employ textit{ab-initio} calculations to investigate the strain-induced structural instabilities in a pristine single layer and analyse the energy hierarchy of the structural and charge modulations. Our results support the observation of phase separation between triangular and stripe phases in 1H-NbSe$_2$, relating the stripe phase to compressive isotropic strain, favouring the $4times4$ modulation. The observed wavelength of the charge modulation is also reproduced with good accuracy.
Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T. This enables the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا