Do you want to publish a course? Click here

First-order phase transitions in two-dimensional off-lattice liquid crystals

166   0   0.0 ( 0 )
 Added by H. H. Wensink
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider an off-lattice liquid crystal pair potential in strictly two dimensions. The potential is purely repulsive and short-ranged. Nevertheless, by means of a single parameter in the potential, the system is shown to undergo a first-order phase transition. The transition is studied using mean-field density functional theory, and shown to be of the isotropic-to-nematic kind. In addition, the theory predicts a large density gap between the two coexisting phases. The first-order nature of the transition is confirmed using computer simulation and finite-size scaling. Also presented is an analysis of the interface between the coexisting domains, including estimates of the line tension, as well as an investigation of anchoring effects.



rate research

Read More

Spontaneous onset of a low temperature topologically ordered phase in a 2-dimensional (2D) lattice model of uniaxial liquid crystal (LC) was debated extensively pointing to a suspected underlying mechanism affecting the RG flow near the topological fixed point. A recent MC study clarified that a prior crossover leads to a transition to nematic phase. The crossover was interpreted as due to the onset of a perturbing relevant scaling field originating from the extra spin degree of freedom. As a counter example and in support of this hypothesis, we now consider V-shaped bent-core molecules with rigid rod-like segments connected at an assigned angle. The two segments of the molecule interact with the segments of all the nearest neighbours on a square lattice, prescribed by a biquadratic interaction. We compute equilibrium averages of different observables with Monte Carlo techniques as a function of temperature and sample size. For the chosen molecular bend angle and symmetric inter-segment interaction between neighbouirng molecules, the 2D system shows two transitions as a function of T: the higher one at T1 leads to a topological ordering of defects associated with the major molecular axis without a crossover, imparting uniaxial symmetry to the medium described by the first fundamental group of the order parameter space $pi_{1}$= $Z_{2}$ (inversion symmetry). The second at T2 leads to a medium displaying biaxial symmetry with $pi_{1}$ = Q (quaternion group). The biaxial phase shows a self-similar microscopic structure with the three axes showing power law correlations with vanishing exponents as the temperature decreases.
Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multi-layer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line-shape provides a direct measurement of the temperature dependent exponent $eta(T)$ characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: here the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this works highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.
Using event driven molecular dynamics simulations, we study a three dimensional one-component system of spherical particles interacting via a discontinuous potential combining a repulsive square soft core and an attractive square well. In the case of a narrow attractive well, it has been shown that this potential has two metastable gas-liquid critical points. Here we systematically investigate how the changes of the parameters of this potential affect the phase diagram of the system. We find a broad range of potential parameters for which the system has both a gas-liquid critical point and a liquid-liquid critical point. For the liquid-gas critical point we find that the derivatives of the critical temperature and pressure, with respect to the parameters of the potential, have the same signs: they are positive for increasing width of the attractive well and negative for increasing width and repulsive energy of the soft core. This result resembles the behavior of the liquid-gas critical point for standard liquids. In contrast, for the liquid-liquid critical point the critical pressure decreases as the critical temperature increases. As a consequence, the liquid-liquid critical point exists at positive pressures only in a finite range of parameters. We present a modified van der Waals equation which qualitatively reproduces the behavior of both critical points within some range of parameters, and give us insight on the mechanisms ruling the dependence of the two critical points on the potentials parameters. The soft core potential studied here resembles model potentials used for colloids, proteins, and potentials that have been related to liquid metals, raising an interesting possibility that a liquid-liquid phase transition may be present in some systems where it has not yet been observed.
We study lattice gas systems on the honeycomb lattice where particles exclude neighboring sites up to order $k$ ($k=1ldots5$) from being occupied by another particle. Monte Carlo simulations were used to obtain phase diagrams and characterize phase transitions as the system orders at high packing fractions. For systems with first neighbors exclusion (1NN), we confirm previous results suggesting a continuous transition in the 2D-Ising universality class. Exclusion up to second neighbors (2NN) lead the system to a two-step melting process where, first, a high density columnar phase undergoes a first order phase transition with non-standard scaling to a solid-like phase with short range ordered domains and, then, to fluid-like configurations with no sign of a second phase transition. 3NN exclusion, surprisingly, shows no phase transition to an ordered phase as density is increased, staying disordered even to packing fractions up to 0.98. The 4NN model undergoes a continuous phase transition with critical exponents close to the 3-state Potts model. The 5NN system undergoes two first order phase transitions, both with non-standard scaling. We, also, propose a conjecture concerning the possibility of more than one phase transition for systems with exclusion regions further than 5NN based on geometrical aspects of symmetries.
The presence of stable topological defects in a two-dimensional (textit{d} = 2) liquid crystal model allowing molecular reorientations in three dimensions (textit{n} = 3) was largely believed to induce defect-mediated Berzenskii-Kosterlitz-Thouless (BKT) type transition to a low temperature phase with quasi long-range order. However, earlier Monte Carlo (MC) simulations could not establish certain essential signatures of the transition, suggesting further investigations. We study this model by computing its equilibrium properties through MC simulations, based on the determination of the density of states of the system. Our results show that, on cooling, the high temperature disordered phase deviates from its initial progression towards the topological transition, crossing over to a new fixed point, condensing into a nematic phase with exponential correlations of its director fluctuations. The thermally induced topological kinetic processes continue, however limited to the length scales set by the nematic director fluctuations, and lead to a second topological transition at a lower temperature. We argue that in the (textit{d} = 2, textit{n} = 3) system with a biquadratic Hamiltonian, the presence of additional molecular degree of freedom and local $Z_{2}$ symmetry associated with lattice sites, together promote the onset of an additional relevant scaling field at matching length scales in the high temperature region, leading to a crossover.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا