Do you want to publish a course? Click here

Mediation of Long-Range Attraction Selectively between Negatively-Charged Colloids on Surfaces by Solvation

208   0   0.0 ( 0 )
 Added by William Kung
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a mean-field analytical model to account for the observed asymmetry in the ability to form long-range attraction by the negatively charged colloidal particles and not their equivalently charged positive counterpart. We conjecture that this asymmetry is due to solvation effects, and we phenomenologically capture its physics by considering the relative strength of this water-induced short-range repulsion between the different charge species. We then apply our model to the colloidal system of negatively charged disks that are neutralized by a sea of counterions and strongly absorbed to an interface in a compressible binary system. We demonstrate the resulting coexistence between a dilute isotropic ionic phase and a condensed hexagonal lattice phase as a function of density and interaction strength.



rate research

Read More

We report observations of stable bound pairs in very dilute deionized aqueous suspensions of highly charged polystyrene colloidal particles, with monovalent counterions, using a confocal laser scanning microscope. Through an analysis of several thousands of time series of confocal images recorded deep inside the bulk suspension, we find that the measured pair-potential, U(r) has a long-range attractive component with well depths larger than the thermal energy. These observations provide a direct and unequivocal evidence for the existence of long-range attraction in U(r) of like-charged colloidal particles.
Even something as conceptually simple as adsorption of electronegative adatoms on metal surfaces, where repulsive lateral interactions are expected for obvious reasons, can lead to unanticipated behavior. In this context, we explain the origin of surprising lateral interactions between electronegative adatoms observed on some metal surfaces by means of density functional theory calculations of four electronegative atoms (N, O, F, Cl) on 70 surfaces of 44 pristine metals. Four different scenarios for lateral interactions are identified, some of them being unexpected: (i) they are repulsive, which is the typical case and occurs on almost all transition metals. (ii,iii) They are atypical, being either attractive or negligible, which occurs on p-block metals and Mg, and (iv) surface reconstruction stabilizes the low-coverage configuration, preventing atypical lateral interactions. The last case occurs predominantly on s-block metals.
61 - E. Levine , D. Mukamel , 2004
The effective interaction between two probe particles in a one-dimensional driven system is studied. The analysis is carried out using an asymmetric simple exclusion process with nearest-neighbor interactions. It is found that the driven fluid mediates an effective long-range attraction between the two probes, with a force that decays at large distances x as -b/x, where b is a function of the interaction parameters. Depending on the amplitude b the two probes may form one of three states: (a) an unbound state, where the distance grows diffusively with time; (b) a weakly bound state, in which the distance grows sub-diffusively; and (c) a strongly bound state, where the average distance stays finite in the long time limit. Similar results are found for the behavior of any finite number of probes.
Many biological systems fold thin sheets of lipid membrane into complex three-dimensional structures. This microscopic origami is often mediated by the adsorption and self-assembly of proteins on a membrane. As a model system to study adsorption-mediated interactions, we study the collective behavior of micrometric particles adhered to a lipid vesicle. We estimate the colloidal interactions using a maximum likelihood analysis of particle trajectories. When the particles are highly wrapped by a tense membrane, we observe strong long-range attractions with a typical binding energy of 150 $k_B T$ and significant forces extending a few microns.
122 - E.Allahyarov , G.Gompper , H.Lowen 2003
The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modelled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counter- and monovalent salt ions, we find a salt-induced stabilization effect: the force is first attractive but gets repulsive for increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا