Do you want to publish a course? Click here

Attraction between DNA molecules mediated by multivalent ions

123   0   0.0 ( 0 )
 Added by Allahyaroff
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modelled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counter- and monovalent salt ions, we find a salt-induced stabilization effect: the force is first attractive but gets repulsive for increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.



rate research

Read More

We discuss the distribution of ions around highly charged PEs when there is competition between monovalent and multivalent ions, pointing out that in this case the number of condensed ions is sensitive to short-range interactions, salt, and model-dependent approximations. This sensitivity is discussed in the context of recent experiments on DNA aggregation, induced by multivalent counterions such as spermine and spermidine.
We present a theory for the interaction between motile particles in an elastic medium on a substrate, relying on two arguments: a moving particle creates a strikingly fore-aft asymmetric distortion in the elastic medium; this strain field reorients other particles. We show that this leads to sensing, attraction and pursuit, with a non-reciprocal character, between a pair of motile particles. We confirm the predicted distortion fields and non-mutual trail-following in our experiments and simulations on polar granular rods made motile by vibration, moving through a dense monolayer of beads in its crystalline phase. Our theory should be of relevance to the interaction of motile cells in the extracellular matrix or in a supported layer of gel or tissue.
Most binary superlattices created using DNA functionalization or other approaches rely on particle size differences to achieve compositional order and structural diversity. Here we study two-dimensional (2D) assembly of DNA-functionalized micron-sized particles (DFPs), and employ a strategy that leverages the tunable disparity in interparticle interactions, and thus enthalpic driving forces, to open new avenues for design of binary superlattices that do not rely on the ability to tune particle size (i.e., entropic driving forces). Our strategy employs tailored blends of complementary strands of ssDNA to control interparticle interactions between micron-sized silica particles in a binary mixture to create compositionally diverse 2D lattices. We show that the particle arrangement can be further controlled by changing the stoichiometry of the binary mixture in certain cases. With this approach, we demonstrate the abil- ity to program the particle assembly into square, pentagonal, and hexagonal lattices. In addition, different particle types can be compositionally ordered in square checkerboard and hexagonal - alternating string, honeycomb, and Kagome arrangements.
The present article provides an overview of the recent progress in the direct force measurements between individual pairs of colloidal particles in aqueous salt solutions. Results obtained by two different techniques are being highlighted, namely with the atomic force microscope (AFM) and optical tweezers. One finds that the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) represents an accurate description of the force profiles even in the presence of multivalent ions, typically down to distances of few nanometers. However, the corresponding Hamaker constants and diffuse layer potentials must be extracted from the force profiles. At low salt concentrations, double layer forces remain repulsive and may become long ranged. At short distances, additional short range non-DLVO interactions may become important. Such an interaction is particularly relevant in the presence of multivalent counterions.
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this superselectivity, however a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster Resonance Energy Transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a non-linear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions and we confirm that the time-scale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide new, dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا