We discuss theoretically quantum interface between light and a spin polarized ensemble of atoms with the spin >= 1 based on an off-resonant Raman scattering. We present the spectral theory of the light-atoms interaction and show how particular spectral modes of quantum light couple to spatial modes of the extended atomic ensemble. We show how this interaction can be used for quantum memory storage and retrieval and for deterministic entanglement protocols. The proposed protocols are attractive due to their simplicity since they involve just a single pass of light through atoms without the need for elaborate pulse shaping or quantum feedback. As a practically relevant example we consider the interaction of a light pulse with hyperfine components of D1 line of 87Rb. The quality of the proposed protocols is verified via analytical and numerical analysis.
Quantum theoretical treatment of coherent forward scattering of light in a polarized atomic ensemble with an arbitrary angular momentum is developed. We consider coherent forward scattering of a weak radiation field interacting with a realistic multi-level atomic transition. Based on the concept of an effective Hamiltonian and on the Heisenberg formalism, we discuss the coupled dynamics of the quantum fluctuations of the polarization Stokes components of propagating light and of the collective spin fluctuations of the scattering atoms. We show that in the process of coherent forward scattering this dynamics can be described in terms of a polariton-type spin wave created in the atomic sample. Our work presents a general example of entangling process in the system of collective quantum states of light and atomic angular momenta, previously considered only for the case of spin-1/2 atoms. We use the developed general formalism to test the applicability of spin-1/2 approximation for modelling the quantum non-demolishing measurement of atoms with a higher angular momentum.
We propose a feasible scheme of quantum state storage and manipulation via electromagnetically induced transparency (EIT) in flexibly $united$ multi-ensembles of three-level atoms. For different atomic array configurations, one can properly steer the signal and the control lights to generate different forms of atomic entanglement within the framework of linear optics. These results shed new light on designing the versatile quantum memory devices by using, e.g., an atomic grid.
We propose a scheme to realize optical quantum memories in an ensemble of nitrogen-vacancy centers in diamond that are coupled to a micro-cavity. The scheme is based on off-resonant Raman coupling, which allows one to circumvent optical inhomogeneous broadening and store optical photons in the electronic spin coherence. This approach promises a storage time of order one second and a time-bandwidth product of order 10$^7$. We include all possible optical transitions in a 9-level configuration, numerically evaluate the efficiencies and discuss the requirements for achieving high efficiency and fidelity.
We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction.
We analyze a similar scheme for producing light-mediated entanglement between atomic ensembles, as first realized by Julsgaard, Kozhekin and Polzik [Nature {bf 413}, 400 (2001)]. In the standard approach to modeling the scheme, a Holstein-Primakoff approximation is made, where the atomic ensembles are treated as bosonic modes, and is only valid for short interaction times. In this paper, we solve the time evolution without this approximation, which extends the region of validity of the interaction time. For short entangling times, we find this produces a state with similar characteristics as a two-mode squeezed state, in agreement with standard predictions. For long entangling times, the state evolves into a non-Gaussian form, and the two-mode squeezed state characteristics start to diminish. This is attributed to more exotic types of entangled states being generated. We characterize the states by examining the Fock state probability distributions, Husimi $Q$ distributions, and non-local entanglement between the ensembles. We compare and connect several quantities obtained using the Holstein-Primakoff approach and our exact time evolution methods.
O.S. Mishina
,D.V. Kupriyanov
,J.H. Muller
.
(2006)
.
"Spectral theory of quantum memory and entanglement via Raman scattering of light by an atomic ensemble"
.
Oxana Mishina Sergeevna
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا