Do you want to publish a course? Click here

Multiple-Description Coding by Dithered Delta-Sigma Quantization

86   0   0.0 ( 0 )
 Added by Jan Ostergaard
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.



rate research

Read More

Quantized compressive sensing (QCS) deals with the problem of representing compressive signal measurements with finite precision representation, i.e., a mandatory process in any practical sensor design. To characterize the signal reconstruction quality in this framework, most of the existing theoretical analyses lie heavily on the quantization of sub-Gaussian random projections (e.g., Gaussian or Bernoulli). We show here that a simple uniform scalar quantizer is compatible with a large class of random sensing matrices known to respect, with high probability, the restricted isometry property (RIP). Critically, this compatibility arises from the addition of a uniform random vector, or dithering, to the linear signal observations before quantization. In this setting, we prove the existence of (at least) one signal reconstruction method, i.e., the projected back projection (PBP), whose reconstruction error decays when the number of quantized measurements increases. This holds with high probability in the estimation of sparse signals and low-rank matrices. We validate numerically the predicted error decay as the number of measurements increases.
Communication systems with low-resolution analog-to-digital-converters (ADCs) can exploit channel state information at the transmitter (CSIT) and receiver. This paper presents initial results on codebook design and performance analysis for limited feedback systems with one-bit ADCs. Different from the high-resolution case, the absolute phase at the receiver is important to align the phase of the received signals when the received signal is sliced by one-bit ADCs. A new codebook design for the beamforming case is proposed that separately quantizes the channel direction and the residual phase.
We present a joint source-channel multiple description (JSC-MD) framework for resource-constrained network communications (e.g., sensor networks), in which one or many deprived encoders communicate a Markov source against bit errors and erasure errors to many heterogeneous decoders, some powerful and some deprived. To keep the encoder complexity at minimum, the source is coded into K descriptions by a simple multiple description quantizer (MDQ) with neither entropy nor channel coding. The code diversity of MDQ and the path diversity of the network are exploited by decoders to correct transmission errors and improve coding efficiency. A key design objective is resource scalability: powerful nodes in the network can perform JSC-MD distributed estimation/decoding under the criteria of maximum a posteriori probability (MAP) or minimum mean-square error (MMSE), while primitive nodes resort to simpler MD decoding, all working with the same MDQ code. The application of JSC-MD to distributed estimation of hidden Markov models in a sensor network is demonstrated. The proposed JSC-MD MAP estimator is an algorithm of the longest path in a weighted directed acyclic graph, while the JSC-MD MMSE decoder is an extension of the well-known forward-backward algorithm to multiple descriptions. Both algorithms simultaneously exploit the source memory, the redundancy of the fixed-rate MDQ, and the inter-description correlations. They outperform the existing hard-decision MDQ decoders by large margins (up to 8dB). For Gaussian Markov sources, the complexity of JSC-MD distributed MAP sequence estimation can be made as low as that of typical single description Viterbi-type algorithms.
113 - Or Ordentlich , Uri Erez 2015
Sampling above the Nyquist rate is at the heart of sigma-delta modulation, where the increase in sampling rate is translated to a reduction in the overall (mean-squared-error) reconstruction distortion. This is attained by using a feedback filter at the encoder, in conjunction with a low-pass filter at the decoder. The goal of this work is to characterize the optimal trade-off between the per-sample quantization rate and the resulting mean-squared-error distortion, under various restrictions on the feedback filter. To this end, we establish a duality relation between the performance of sigma-delta modulation, and that of differential pulse-code modulation when applied to (discrete-time) band-limited inputs. As the optimal trade-off for the latter scheme is fully understood, the full characterization for sigma-delta modulation, as well as the optimal feedback filters, immediately follow.
258 - Yuval Kochman , Ram Zamir 2008
The combination of source coding with decoder side-information (Wyner-Ziv problem) and channel coding with encoder side-information (Gelfand-Pinsker problem) can be optimally solved using the separation principle. In this work we show an alternative scheme for the quadratic-Gaussian case, which merges source and channel coding. This scheme achieves the optimal performance by a applying modulo-lattice modulation to the analog source. Thus it saves the complexity of quantization and channel decoding, and remains with the task of shaping only. Furthermore, for high signal-to-noise ratio (SNR), the scheme approaches the optimal performance using an SNR-independent encoder, thus it is robust to unknown SNR at the encoder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا