Do you want to publish a course? Click here

A new formulation of asset trading games in continuous time with essential forcing of variation exponent

152   0   0.0 ( 0 )
 Added by Akimichi Takemura
 Publication date 2010
  fields Financial
and research's language is English




Ask ChatGPT about the research

We introduce a new formulation of asset trading games in continuous time in the framework of the game-theoretic probability established by Shafer and Vovk (Probability and Finance: Its Only a Game! (2001) Wiley). In our formulation, the market moves continuously, but an investor trades in discrete times, which can depend on the past path of the market. We prove that an investor can essentially force that the asset price path behaves with the variation exponent exactly equal to two. Our proof is based on embedding high-frequency discrete-time games into the continuous-time game and the use of the Bayesian strategy of Kumon, Takemura and Takeuchi (Stoch. Anal. Appl. 26 (2008) 1161--1180) for discrete-time coin-tossing games. We also show that the main growth part of the investors capital processes is clearly described by the information quantities, which are derived from the Kullback--Leibler information with respect to the empirical fluctuation of the asset price.



rate research

Read More

We study multistep Bayesian betting strategies in coin-tossing games in the framework of game-theoretic probability of Shafer and Vovk (2001). We show that by a countable mixture of these strategies, a gambler or an investor can exploit arbitrary patterns of deviations of natures moves from independent Bernoulli trials. We then apply our scheme to asset trading games in continuous time and derive the exponential growth rate of the investors capital when the variation exponent of the asset price path deviates from two.
It is a difficult task for both professional investors and individual traders continuously making profit in stock market. With the development of computer science and deep reinforcement learning, Buy&Hold (B&H) has been oversteped by many artificial intelligence trading algorithms. However, the information and process are not enough, which limit the performance of reinforcement learning algorithms. Thus, we propose a parallel-network continuous quantitative trading model with GARCH and PPO to enrich the basical deep reinforcement learning model, where the deep learning parallel network layers deal with 3 different frequencies data (including GARCH information) and proximal policy optimization (PPO) algorithm interacts actions and rewards with stock trading environment. Experiments in 5 stocks from Chinese stock market show our method achieves more extra profit comparing with basical reinforcement learning methods and bench models.
We consider trading against a hedge fund or large trader that must liquidate a large position in a risky asset if the market price of the asset crosses a certain threshold. Liquidation occurs in a disorderly manner and negatively impacts the market price of the asset. We consider the perspective of small investors whose trades do not induce market impact and who possess different levels of information about the liquidation trigger mechanism and the market impact. We classify these market participants into three types: fully informed, partially informed and uninformed investors. We consider the portfolio optimization problems and compare the optimal trading and wealth processes for the three classes of investors theoretically and by numerical illustrations.
We study a phenomenological model for the continuous double auction, equivalent to two independent $M/M/1$ queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe an intermittent behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen.
Executing a basket of co-integrated assets is an important task facing investors. Here, we show how to do this accounting for the informational advantage gained from assets within and outside the basket, as well as for the permanent price impact of market orders (MOs) from all market participants, and the temporary impact that the agents MOs have on prices. The execution problem is posed as an optimal stochastic control problem and we demonstrate that, under some mild conditions, the value function admits a closed-form solution, and prove a verification theorem. Furthermore, we use data of five stocks traded in the Nasdaq exchange to estimate the model parameters and use simulations to illustrate the performance of the strategy. As an example, the agent liquidates a portfolio consisting of shares in Intel Corporation (INTC) and Market Vectors Semiconductor ETF (SMH). We show that including the information provided by three additional assets, FARO Technologies (FARO), NetApp (NTAP) and Oracle Corporation (ORCL), considerably improves the strategys performance; for the portfolio we execute, it outperforms the multi-asset version of Almgren-Chriss by approximately 4 to 4.5 basis points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا