No Arabic abstract
Executing a basket of co-integrated assets is an important task facing investors. Here, we show how to do this accounting for the informational advantage gained from assets within and outside the basket, as well as for the permanent price impact of market orders (MOs) from all market participants, and the temporary impact that the agents MOs have on prices. The execution problem is posed as an optimal stochastic control problem and we demonstrate that, under some mild conditions, the value function admits a closed-form solution, and prove a verification theorem. Furthermore, we use data of five stocks traded in the Nasdaq exchange to estimate the model parameters and use simulations to illustrate the performance of the strategy. As an example, the agent liquidates a portfolio consisting of shares in Intel Corporation (INTC) and Market Vectors Semiconductor ETF (SMH). We show that including the information provided by three additional assets, FARO Technologies (FARO), NetApp (NTAP) and Oracle Corporation (ORCL), considerably improves the strategys performance; for the portfolio we execute, it outperforms the multi-asset version of Almgren-Chriss by approximately 4 to 4.5 basis points.
Trading frictions are stochastic. They are, moreover, in many instances fast-mean reverting. Here, we study how to optimally trade in a market with stochastic price impact and study approximations to the resulting optimal control problem using singular perturbation methods. We prove, by constructing sub- and super-solutions, that the approximations are accurate to the specified order. Finally, we perform some numerical experiments to illustrate the effect that stochastic trading frictions have on optimal trading.
We develop the optimal trading strategy for a foreign exchange (FX) broker who must liquidate a large position in an illiquid currency pair. To maximize revenues, the broker considers trading in a currency triplet which consists of the illiquid pair and two other liquid currency pairs. The liquid pairs in the triplet are chosen so that one of the pairs is redundant. The broker is risk-neutral and accounts for model ambiguity in the FX rates to make her strategy robust to model misspecification. When the broker is ambiguity neutral (averse) the trading strategy in each pair is independent (dependent) of the inventory in the other two pairs in the triplet. We employ simulations to illustrate how the robust strategies perform. For a range of ambiguity aversion parameters, we find the mean Profit and Loss (P&L) of the strategy increases and the standard deviation of the P&L decreases as ambiguity aversion increases.
An investor trades a safe and several risky assets with linear price impact to maximize expected utility from terminal wealth. In the limit for small impact costs, we explicitly determine the optimal policy and welfare, in a general Markovian setting allowing for stochastic market, cost, and preference parameters. These results shed light on the general structure of the problem at hand, and also unveil close connections to optimal execution problems and to other market frictions such as proportional and fixed transaction costs.
Traders in a stock market exchange stock shares and form a stock trading network. Trades at different positions of the stock trading network may contain different information. We construct stock trading networks based on the limit order book data and classify traders into $k$ classes using the $k$-shell decomposition method. We investigate the influences of trading behaviors on the price impact by comparing a closed national market (A-shares) with an international market (B-shares), individuals and institutions, partially filled and filled trades, buyer-initiated and seller-initiated trades, and trades at different positions of a trading network. Institutional traders professionally use some trading strategies to reduce the price impact and individuals at the same positions in the trading network have a higher price impact than institutions. We also find that trades in the core have higher price impacts than those in the peripheral shell.