Do you want to publish a course? Click here

The Role of Electron-electron Interactions in Graphene ARPES Spectra

140   0   0.0 ( 0 )
 Added by Reza Asgari
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a theoretical study of the influence of electron-electron interactions on ARPES spectra in graphene that is based on the random-phase-approximation and on graphenes massless Dirac equation continuum model. We find that level repulsion between quasiparticle and plasmaron resonances gives rise to a gap-like feature at small k. ARPES spectra are sensitive to the electron-electron interaction coupling strength $alpha_{rm gr}$ and might enable an experimental determination of this material parameter.



rate research

Read More

The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details of disorder. A new temperature regime of the interaction correction is observed where quantum interference is suppressed by intra-valley scattering. We determine the value of the interaction parameter, F_0 ~ -0.1, and show that its small value is due to the chiral nature of interacting electrons.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
We study theoretically the effects of short-range electron-electron interactions on the electronic structure of graphene, in the presence of single substitutional impurities. Our computational approach is based on the $pi$ orbital tight-binding approximation for graphene, with the electron-electron interactions treated self-consistently at the level of the mean-field Hubbard model. We compare explicitly non-interacting and interacting cases with varying interaction strength and impurity potential strength. We focus in particular on the interaction-induced modifications in the local density of states around the impurity, which is a quantity that can be directly probed by scanning tunneling spectroscopy of doped graphene. We find that the resonant character of the impurity states near the Fermi level is enhanced by the interactions. Furthermore, the size of the energy gap, which opens at high-symmetry points of the Brillouin zone of the supercell upon doping, is significantly affected by the interactions. The details of this effect depend subtly on the supercell geometry. We use a perturbative model to explain these features and find quantitative agreement with numerical results.
We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, after elimination of a geometric magnetoresistance and subtraction of the magnetic field dependent Drude conductivity. The electron electron interaction correction is extracted at higher magnetic fields, where localization effects disappear. Both phenomena are weak but sizable and of the same order of magnitude. If compared to graphene on silicon dioxide, electron electron interaction on epitaxial graphene are not significantly reduced by the larger dielectric constant of the SiC substrate.
Theory of the electron spin relaxation in graphene on the SiO$_2$ substrate is developed. Charged impurities and polar optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field which leads to spin relaxation by the Dyakonov-Perel mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا