Do you want to publish a course? Click here

Radio Frequency Spectra of 388 Bright 74 MHz Sources

236   0   0.0 ( 0 )
 Added by Joe Helmboldt
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

As a service to the community, we have compiled radio frequency spectra from the literature for all sources within the VLA Low Frequency Sky Survey (VLSS) that are brighter than 15 Jy at 74 MHz. Over 160 references were used to maximize the amount of spectral data used in the compilation of the spectra, while also taking care to determine the corrections needed to put the flux densities from all reference on the same absolute flux density scale. With the new VLSS data, we are able to vastly improve upon previous efforts to compile spectra of bright radio sources to frequencies below 100 MHz because (1) the VLSS flux densities are more reliable than those from some previous low frequency surveys and (2) the VLSS covers a much larger area of the sky (declination >-30 deg.) than many other low frequency surveys (e.g., the 8C survey). In this paper, we discuss how the spectra were constructed and how parameters quantifying the shapes of the spectra were derived. Both the spectra and the shape parameters are made available here to assist in the calibration of observations made with current and future low frequency radio facilities.



rate research

Read More

193 - Rocco Coppejans 2017
High-redshift quasars are important to study galaxy and active galactic nuclei (AGN) evolution, test cosmological models, and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multi-frequency Giant Metrewave Radio Telescope (GMRT) observations of eight z>4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z>4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z>4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultra-steep spectra (USS). Recently a new method has been proposed to identify these objects based on their megahertz-peaked spectra (MPS). Neither method would have identified more than 18% of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
We present new Very Large Array (VLA) radio images at 74 and 324 MHz of the SNR W44. The VLA images, obtained with unprecedented angular resolution and sensitivity for such low frequencies have been used in combination with existing 1442 MHz radio data, Spitzer IR data, and ROSAT and Chandra X-ray data to investigate morphological and spectral properties of this SNR. The spatially resolved spectral index study revealed that the bright filaments, both around and across the SNR, have a straight spectrum between 74 and 1442 MHz, with alpha ~ -0.5, with two clear exceptions: a short portion of the SNR limb to the southeast, with alpha varying between 0 and +0.4 and a bright arc to the west where the spectrum breaks around 300 MHz and looks concave down. We conclude that at the shell and along the internal filaments, the electrons responsible for the synchrotron emission were accelerated at the shock according to a simple diffusive shock model; the positive spectrum corresponds to a location where the SN shock is running into a molecular cloud and where the line of sight intersects the photo dissociation region of an HII region and a young stellar object is present. The curved spectrum on the westernmost bright arc is explained as the consequence of strong post-shock densities and enhanced magnetic fields after the interaction of the SN shock with a collindant molecular cloud.
Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mechanism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage and `Toothbrush relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$sigma$ significance level, supports the spectral steepening previously found in the `Sausage and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
We present models to predict high frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars, that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (nu>100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars (Blandford & Konigl 1979; Konigl 1981). A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, nu_M, for BL Lacs and Flat-Spectrum Radio Quasars (FSRQs). The former objects have substantially higher values of nu_M, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented.
135 - Noah Kurinsky 2012
We report multiple epoch VLA/JVLA observations of 89 northern hemisphere sources, most with 37,GHz flux density > 1 Jy, observed at 4.8, 8.5, 33.5, and 43.3 GHz. The high frequency selection leads to a predominantly flat spectrum sample, with 85% of our sources being in the Planck Early Release Compact Source Catalog (ERCSC). These observations allow us to: 1) validate Plancks 30 and 44 GHz flux density scale, 2) extend the radio SEDs of Planck sources to lower frequencies allowing for the full 5-857GHz regime to be studied, and 3) characterize the variability of these sources. At 30 GHz and 44 GHz, the JVLA and Planck flux densities agree to within 3%. On timescales of less than two months the median variability of our sources is 2%. On timescales of about a year the median variability increases to 14%. Using the WMAP 7-year data, the 30 GHz median variability on a 1-6 years timescale is 16%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا